Устройство замкнутого водоснабжения своими руками

Содержание
  1. УЗВ своими руками для выращивания рыбы: из чего состоит и как сделать по схеме
  2. Что такое УЗВ в рыбоводстве в домашнем хозяйстве
  3. Некоторые рекомендации по строительству и установке
  4. Устройство для рыборазведения своими руками
  5. Схема оборудования для выращивания и разведения рыбы, инструкция по применению
  6. УЗВ для выращивания рыбы своими руками: оборудование для аквафермы, схемы для выращивания – установка замкнутого водоснабжения, бассейн и биозагрузка
  7. Принцип работы УЗВ
  8. Некоторые рекомендации по строительству и установке
  9. Плюсы и минусы
  10. Проектирование замкнутых аквакультур
  11. Бактериальная очистка
  12. Простейшая самодельная установка
  13. Устройство для рыборазведения своими руками
  14. Re: Сколько по минимуму будет стоить УЗВ?
  15. Comments
  16. Типы бассейнов для УЗВ
  17. Какими бывают биофильтры?
  18. Проект системы
  19. Прототип небольшой системы
  20. Бассейн для удаления твердых частиц
  21. Бассейн для нитрификации
  22. Линия подачи воды и гидравлическая нагрузка
  23. Контроль температуры
  24. Удаление тонкодисперсных частиц
  25. Сигнализация
  26. Биопленка бактерий
  27. Оборот воды в УЗВ
  28. Как сделать биофильтр?
  29. Биологическая регенерация воды в УЗВ
  30. Нитрификация протекает в два этапа
  31. Полносистемная установка замкнутого водоснабжения
  32. Что это такое
  33. Системы оборотного водоснабжения в УЗВ для выращивания рыбы
  34. Очумелые ручки
  35. Общие принципы
  36. Емкости
  37. Заполнение
  38. Показатели продуктивности УЗВ
  39. Продуктивность рыбы в УЗВ
  40. Виды рыб, которые с успехом выращивают в УЗВ
  41. ПРИНЦИП РАБОТЫ БИОЗАГРУЗКИ В ОЧИСТНЫХ СООРУЖЕНИЯХ
  42. Дополнительные моменты
  43. ИСПОЛЬЗОВАНИЕ ББЗ В АЭРОТЕНКАХ

УЗВ своими руками для выращивания рыбы: из чего состоит и как сделать по схеме

В условиях обострения сложной экономической обстановки многие остаются без постоянного источника дохода, поэтому для сельских жителей, имеющих в достаточном количестве свободные площади, актуально организация своего бизнеса, например, рыбного хозяйства. Но для того, чтобы дело смогло прокормить семью, и даже принести прибыль, вначале необходимо обзавестись оборудованием, построить схему замкнутого водоснабжения для выращивания рыбы, или УЗВ.

Что такое УЗВ в рыбоводстве в домашнем хозяйстве

Методология искусственного разведения и выращивания рыбных мальков до товарного вида известна еще с древних времен: зажиточная знать всегда имела в своих домах аквариумы с декоративными рыбками. Принцип масштабного разведения форели и других рыб, мало чем отличается от аквариумных условий, но в те времена еще не знали про замкнутую технологию восстановления водного ресурса от жизнедеятельности рыбы, поэтому замена воды всегда велась ручным способом.

Но такой подход в промышленных целях категорически неприемлем – трудоемкость и физические затраты могут перечеркнуть желание заняться рыборазведением навсегда. Про оборудование для выращивания Шампиньонов читайте тут.

Но прогресс не стоит на месте, и энтузиасты изобрели систему замкнутого водоснабжения, в установке такого типа все процессы по замене отработанной воды, подаче корма, восстановлению жизненно необходимых питательных элементов для рыбного поголовья происходит в автоматическом режиме. Также в ней предусматривается поддержка необходимого для правильного развития мальков температурного режима воды, если это необходимо, то она будет подогреваться.

Как сделать вольер для нутрий своими руками узнайте здесь.

На видео – схема узв для выращивания рыбы:

В принципе рыборазведение в комплексе состоит из нескольких важных моментов, о которых следует узнать заранее:

  • Количество модульных емкостей для накопления воды. Вся ферма будет состоять из нескольких автономных бассейнов, никак не связанных между собой перемычками. Этот подход сможет обеспечить здоровое поголовье, если в каком-то из бассейнов наблюдается заболевание мальков. На рынках можно встретить самые разные устройства: от небольших по площади бассейнов, до масштабных, в которых можно разместить большое количество рыбы для выращивания.
  • Для разведения определенного вида особей, например, форели, необходимы емкости конусовидные, но глубокие.
  • Обустройство специального отапливаемого помещения для поддержания необходимой температуры.
  • При отлове рыбы в других емкостях особи не чувствуют тревоги, и это способствует их правильному развитию.
  • Организация подачи воды. Для обеспечения здоровья рыбы воду следует брать из проверенных источников глубокого залегания: это даст уверенность отсутствия болезнетворных микроорганизмов и мальков диких видов рыбы.
  • Обеспечение бассейнов насыщением кислородом происходит при помощи особой установки, которая монтируется возле места подачи водных ресурсов.
  • Организация сброса отработанной воды для ее деактивации. Все продукты жизнедеятельности поголовья аккумулируются в специальном сборнике, который обычно находится внизу бассейнов, к нему монтируются выходные клапаны и автоматическое насосное устройство для откачки.

На видео – полная организация сброса воды:

  • Нагнетание водных ресурсов происходит при помощи насосных установок, от его мощности будет зависеть скорость заполнения емкостей.
  • Обеспечение фильтрации на входе и выходе с одновременной биологической обработкой. Здесь применяю специальные аэробные микроорганизмы, разлагающие вредные вещества на безопасные соединения.
  • Поддержка необходимой температуры проводится в автоматическом настраиваемом режиме: либо она подогревается для стимуляции нереста, либо остужается для его приостановки.
  • Установка кислородного устройства. Это требование обязательно, поскольку без этого жизненно важного элемента рыба погибнет.

Про скобообжимной инструмент для изготовления клеток узнайте в этом материале.

Некоторые рекомендации по строительству и установке

  • Если в установке отсутствует устройство насыщения кислородом, то следует поддерживать необходимое количество поголовья для правильного развития. При наличии оксидного приспособления эта функция не так важна.
  • Поскольку в замкнутом пространстве бассейна пищу взять негде, то организация питания важный этап в выращивании рыбы. Если, например, ее будет много, то она будет влиять на прозрачность толщи воды, разлагаться и приносить неудобство при дальнейшем развитии. Поэтому следует придерживаться рекомендованных усредненных норм, чтобы избежать этих последствий.

Про оборудование для молочного завода расскажет эта статья.

Устройство для рыборазведения своими руками

В отличии от технологии выращивания шампиньонов в домашних условиях с которым справится и новичок, рыбное фермерское хозяйство – это многоуровневый комплекс механизмов, емкостей и всевозможных технических устройств, из которых можно выделить:

  • Полипропиленовые бассейны разных объемов.
  • Емкости для аккумуляции икры для выращивания мальков.
  • Технические элементы для подачи, очистки и сброса отработанной воды. К ним относят:
    • комплект механической очистки от крупных фракций с опцией дегазации;
    • биологическое очистное оборудование на основе применения ультрафиолетовых лучей;
    • оксидный генератор кислорода.
  • Комплексное оборудование для очистки толщи воды, в который входит барабанный фильтр, поплавковый элемент включения/отключения устройства, запорное приспособление для сброса отработанных фракций.
  • Дегазаторное устройство для деактивации перенасыщением азотистых соединений с обустройством редуктора, обеспечивающего нормальное давление в водяном слое.
  • Биологический реактор для проведения стерилизации представлен специальной емкостью, наполненную кварцевым песком, куда заселяются аэробные микроорганизмы для деактивации соединений нитритов и азота от жизнедеятельности поголовья.
  • Устройство для производства оксидных соединений (насыщение кислородом).
  • Технические средства нагнетания и отвода воды – насосы разной мощности.
  • Биологические фильтровальные установки, в основе которых применяют аэробные микроорганизмы для деактивации вредных соединений в воде.
  • Комплексные переключатели поплавкового типа с разного рода датчиками следит за правильной работой всей системы жизнеобеспечения.
  • Электросиловое оборудование комплексного вида, устанавливаемого на заземленных щитах.

Про мини-тракторы для дачи с навесным оборудованием расскажет эта ссылка.

На видео – рекомендации по установки УЗВ:

Схема оборудования для выращивания и разведения рыбы, инструкция по применению

Чтобы иметь представление своей будущей рыбной фермы, можно посмотреть ее на схеме проекта:

Для небольшого рыбного хозяйства предлагается комплекс для разведения осетра в домашних условиях, весом в 1 тонну по цене 1, 1 млн. руб. , общей площадью 36 кв. м, с 4 емкостями для воды, и потреблением ресурсов с 1, 7 м 3 в день.

Если необходимо организовать производство 2 тонн рыбы в год, то можно приобрести комплекс за 1,7 млн. руб. с большим количеством бассейнов.

Для масштабного рыбного хозяйства предлагается модульное оборудование из 8 бассейнов по цене 2,5 млн. руб.

За сравнительно небольшое вложение можно организовать свой прибыльный беспроигрышный бизнес по разведению шиншилл или рыбы, который будет востребован потребителями всегда.

Вытяжка в курятнике: как сделать вентиляцию своими руками по схемам

Жатка для уборки кукурузы в початках – комбайны

Гранулятор своими руками: как сделать шнековый и бытовой для корма кур из подручных материалов

Как сделать перегной из навоза для огорода на даче

УЗВ для выращивания рыбы своими руками: оборудование для аквафермы, схемы для выращивания – установка замкнутого водоснабжения, бассейн и биозагрузка

Потребность человечества в морепродуктах растёт вместе с населением, а ценные виды рыб находятся на пределе максимально возможного улова. Традиционное рыбоводство требует избытка водных ресурсов. Растущее загрязнение мирового океана сказывается на качестве даров моря. Всё это способствуют популярности УЗВ (установок замкнутого водоснабжения), позволяющих выращивать экологически чистую рыбу в небольшом количестве воды.


УЗВ, позволяющие выращивать экологически чистую рыбу, набирают все большую популярность

Принцип работы УЗВ

В качестве системы жизнеобеспечения водных организмов в рециркуляционных аквакультурах незаменимы установки замкнутого водоснабжения, позволяющие использовать ежедневно не менее 90% восстановленной после жизнедеятельности рыб воды.

Как правило, УЗВ предназначены для интенсивных аквакультур с высокой продуктивностью на единицу объёма воды.

Верхний предел плотности рыбы в УЗВ на основе атмосферного воздуха составляет около 50 грамм на литр воды. В установках с использованием жидкого кислорода этот показатель может быть выше. Содержание такого количества живой рыбы в столь ограниченном объёме воды требует качественного проектирования и исполнения УЗВ. Как правило, рыба умирает от перенаселения, потому что:

  • задохнулась;
  • отравилась азотистыми отходами собственной жизнедеятельности.


УЗВ предназначены для активных аквакультур
Соответственно, верно функционирующая система циркуляции должна достаточно аэрировать воду, добавляя в неё кислород, и, наоборот, выводить диоксид углерода и аммиак.

Последний рыба выделяет в качестве продукта катаболизма белка. Для того чтобы эти процессы производились эффективно, необходимо предварительно отделять твёрдые экскременты и остатки корма.

Таким образом, восстановление воды включает в себя три процесса:

  1. Удаление твёрдых отходов.
  2. Газовый обмен.
  3. Денитрификация.

Последние два могут проводиться одновременно или в любой последовательности. Восстановление воды невозможно эффективно провести в самом аквариуме. Жидкость необходимо изымать для очистки и возвращать обратно, перемещая её с помощью насосов.


Устройство УЗВ может отличаться деталями от указанного на схеме

Устройство УЗВ от изображённого на схеме может отличаться наличием дополнительных модулей: фильтров, насосов, обеззараживателей, блока регулировки кислотности, нагревателей, кислородного генератора, измельчителей, автоматики, отстойников и т. п. Крупные фермы наращиваются умножением однотипных блоков. Основные преимущества систем рециркуляционной аквакультуры перед искусственными прудами и водоёмами:

  • не наносят ущерб окружающей среде;
  • дают возможность полного управления производственными процессами;
  • позволяют круглогодично выращивать рыбу;
  • не зависят от природных факторов;
  • помогают осуществлять полный контроль заболеваний;
  • работают в зонах экстремальных климатических условий.

Некоторые рекомендации по строительству и установке

  • Если в установке отсутствует устройство насыщения кислородом, то следует поддерживать необходимое количество поголовья для правильного развития. При наличии оксидного приспособления эта функция не так важна.
  • Поскольку в замкнутом пространстве бассейна пищу взять негде, то организация питания важный этап в выращивании рыбы. Если, например, ее будет много, то она будет влиять на прозрачность толщи воды, разлагаться и приносить неудобство при дальнейшем развитии. Поэтому следует придерживаться рекомендованных усредненных норм, чтобы избежать этих последствий.

Плюсы и минусы

Как и все прочие устройства, биофильтры имеют свои плюсы и минусы. Среди преимуществ стоит выделить:

  • Отсутствие ограничений при использовании биологических фильтров;
  • Компактность. Далеко не на каждом участке есть возможность выделить площадь под поля фильтрации, поэтому в таких условиях биофильтр – лучший вариант;
  • Простота монтажа и удобство использования;
  • Автономность. Септики с биофильтрами не требуют подключения к электропитанию;
  • Отсутствие запахов.

Минусами использования фильтром является:

  • Более высокая стоимость по сравнению с обычным септиком;
  • Определенные требования к составу стоков. При использовании биологических фильтров нельзя выливать в канализацию дезинфицирующие вещества;
  • Для того чтобы биофильтр работал эффективно, нужно регулярно добавлять специальные биопрепараты;
  • При использовании септиков с биологическими фильтрами нельзя допускать простоя канализации. Если в течение двух недель канализация использоваться не будет, то бактерии могут погибнуть.



Проектирование замкнутых аквакультур

В действующей системе все компоненты должны работать слаженно, иначе её продуктивность будет ограничена производительностью самого слабого блока.

Например, нет смысла в мощном нитрификаторе, если за его работой не успевает модуль газообмена. Прогноз нагрузок на каждый узел — единственно верный способ проектирования компонентов.

Правильной точкой отсчёта будет количество рыбы, планируемое к выращиванию. Этот показатель поможет разобраться с необходимым объёмом пищи, что, в свою очередь, позволит рассчитать, сколько кислорода понадобится для метаболизма этого корма. Другие вычисления дадут мощность установки для аэрации и т. п. Косвенные и прямые расчёты продолжают до тех пор, пока не будет разработан проект системы, теоретически поддерживающий предполагаемую нагрузку без избыточных мощностей каждого из блоков.


Точкой отсчета в сборке УЗВ является планируемое количество рыбы

Непромышленные УЗВ для выращивания рыбы своими руками для домашних хозяйств могут проектироваться на основании иных начальных условий. Доступность материалов и наличие свободного места в этом случае важнее производительности. Компоненты для таких систем могут изготавливаться из самых различных материалов, но должны быть обязательно инертными и не вступать в реакцию с водой. Оцинкованные и медные трубы для инсталляции в этом случае непригодны, так как могут быть токсичны по отношению к обитателям системы. Установка замкнутого водоснабжения для выращивания рыбы, исполненная из пластиковых ёмкостей, труб и фитингов — идеальный вариант.

Стеклопластиковые или полиэтиленовые резервуары химически нейтральны, легко чистятся и стерилизуются. Круглые ёмкости обладают преимуществом в сравнении с квадратными. Оно заключается в способности таких сосудов к самоочистке: если воду напорно подавать в радиальный аквариум под углом, то установится круговое движение.

Слив, организованный в центре, позволяет отходам и остаткам корма самостоятельно уходить в отверстие.

Бактериальная очистка

В системах с рециркуляцией воды бактерий можно отнести к одной из двух основных групп: 1. Почти все органические вещества представлены углеводами, аминокислотами, белками и липидами. Они поступают с несъеденным кормом, мертвыми тушками и экскрементами рыб, и минерализуются гетеротрофными бактериями, как в фильтре, так и в водном потоке.

2. С другой стороны, автотрофные бактерии используют углекислый газ, как источник углерода, и добывают энергию через окисление неорганических азотсодержащих соединений, серы и железа. В ходе минерализации азота в составе протеинов происходит выделение аммония (NH4+). Этот процесс инициируется и протекает при посредничестве протеаз и дезаминаз бактерий. Более того, аммоний выделяется непосредственно рыбами (Sharrer et al., 2005; Sugita et al., 2005).

Читайте также:  Как выбрать шаг трубы для теплого пола

Во время эксплуатации, в фильтрах работает гетерогенная группа хемо-лито-автотрофных строго аэробных бактерий, которые филогенетически не связаны (Aoi et al., 2000; Michaud, 2007). Эти, так называемые, нитрифицирующие бактерии выполняют нитрификацию, т.е. переводят аммоний в нитрит и, затем, менее токсичный нитрат (Schuster and Stelz, 1998). Данный механизм позволяет очистить поступающую в фильтр воду, снизить содержание аммония.

Нитрификация осуществляется лишь двумя бактериальными фракциями: фиксированная фракция (прикрепленная к субстрату) и взвешенная (свободная). Основными лимитирующими факторами для нитрифицирующей биопленки служат TAN (общий аммонийный азот) или DO (концентрация растворенного кислорода). Фактически, этот процесс максимально активен при концентрации кислорода 80%, а при концентрации DO ниже 2 мг/л он прекращается (Michaud, 2007). Кроме того, уровень нитрификации в биопленке можно выразить как баланс между потребностями в субстрате, вследствие роста биомассы, и, наличием свободного пространства, обусловленным процессами диффузии (Rasmussen and Lewandowski, 1998).

Простейшая самодельная установка

Из элементов, доступных в любом строительном магазине, и с помощью инструментов домашнего мастера можно за несколько часов изготовить мини-УЗВ своими руками. Чертёж установки из недорогих компонентов:


УЗВ можно собрать из недорогих материалов своими руками

Основа системы — две бочки, желательно предназначенные для пищевых целей. Одна из них служит аквариумом для рыбы, из нижней части которого при помощи насоса вода перемещается в пластиковое ведро, вмонтированное в верхнюю часть второй бочки. Оно является ёмкостью для механического фильтра, отделяющего остатки корма и твёрдые фекалии. Механически очищенная жидкость через стояк попадает на дно биофильтра для переработки азотистых отходов, а затем снова попадает в аквариум по возвратной трубе.

Подбор сантехнических компонентов зависит от максимальной мощности насоса, производительность которого можно регулировать шаровым краном на перегонном трубопроводе.


Подбор элементов УЗВ зависит от технических условий помещения
Механические фильтры можно сделать из хозяйственных губок или мебельного поролона. В качестве денитрификатора лучше использовать специальную плавающую биозагрузку для УЗВ. Воздушный компрессор низкого давления, нагнетающий воздух на дно аквариума, послужит аэратором.

Технические и биологические основы рециркуляционных аквакультур хорошо изучены. Накопленный опыт позволяет проектировать и изготавливать УЗВ любой сложности и масштабов. Единственный ограничивающий фактор, препятствующий бурному развитию замкнутых систем рыбоводства — экономика. Рыба из УЗВ дороже пойманной в открытом водоёме. Самые успешные рециркуляционные аквакультуры производят дорогие морепродукты для нишевых рынков или расположены в экстремальных климатических зонах. Эта технология пока не позволяет накормить весь мир, но её вклад в улучшение экологии водных бассейнов трудно переоценить.

Устройство для рыборазведения своими руками

В отличии от технологии выращивания шампиньонов в домашних условиях с которым справится и новичок, рыбное фермерское хозяйство – это многоуровневый комплекс механизмов, емкостей и всевозможных технических устройств, из которых можно выделить:

  • Полипропиленовые бассейны разных объемов.
  • Емкости для аккумуляции икры для выращивания мальков.
  • Технические элементы для подачи, очистки и сброса отработанной воды. К ним относят: комплект механической очистки от крупных фракций с опцией дегазации;
  • биологическое очистное оборудование на основе применения ультрафиолетовых лучей;
  • оксидный генератор кислорода.
  • Комплексное оборудование для очистки толщи воды, в который входит барабанный фильтр, поплавковый элемент включения/отключения устройства, запорное приспособление для сброса отработанных фракций.
  • Дегазаторное устройство для деактивации перенасыщением азотистых соединений с обустройством редуктора, обеспечивающего нормальное давление в водяном слое.
  • Биологический реактор для проведения стерилизации представлен специальной емкостью, наполненную кварцевым песком, куда заселяются аэробные микроорганизмы для деактивации соединений нитритов и азота от жизнедеятельности поголовья.
  • Устройство для производства оксидных соединений (насыщение кислородом).
  • Технические средства нагнетания и отвода воды – насосы разной мощности.
  • Биологические фильтровальные установки, в основе которых применяют аэробные микроорганизмы для деактивации вредных соединений в воде.
  • Комплексные переключатели поплавкового типа с разного рода датчиками следит за правильной работой всей системы жизнеобеспечения.
  • Электросиловое оборудование комплексного вида, устанавливаемого на заземленных щитах.

На видео – рекомендации по установки УЗВ:

Re: Сколько по минимуму будет стоить УЗВ?

Comments

Построить своими руками можно все, если есть схемы и планы! Только это однозначно скажется на надежности всей системы. Надо быть к этому готовым!

Я рекомендую покупать только профессиональное оборудование для аквакультуры. Но если нет денег, а построить все же хочется, то можно брать другое.

Установка состоит из:

. Их можно сделать из кирпичей, бетона или просто купить плавательный бассейн. Высота бортика не выше 1,2 м или 1,5 м. Например можно посмотреть вот эти немецкие бассейны РИО от фирмы КОМТЕК: https://www.kontek.ru/index.sema?a=catalogue&sa=product&id=5 Я звонил как-то им и узнавал цену на 5 м диаметром бассейн. Мне сказали 1000 $ и при заказе несколько штук дадут скидку 10%. Какая у них сейчас цена не знаю.

Если покупать в Германии для осетровника 20 тонн, то:

Мальковый цех — 4.000 €. Производственный цех — 6.000 €

Посмотрите использование подобных бассейнов в Израиле в УЗВ: https://www.catfish.lv/test/israel3.htm

. В России выпускается много вариантов пластиковых труб.

3. Генератор кислорода и Оксигенатор

. Единственная дорогая вещь в УЗВ! Я знаю две российские фирмы выпускающие отечественные генераторы. У них же можно приобрести и Оксигенатор. Если поискать в Интернете, то может уже есть и другие. Удобно будет объединиться с заправщиками кислородных баллонов для резки металла. Если вы вместе купите генератор, то кислород обходиться примерно 1-1,5 кВат электричества = 1 кг кислорода. В большом баллоне, сжатого кислорода примерно 6-8 кг. Вот и сравните с ценами на заправку кислородных баллонов. Еще один вариант – это пойти на «закрытые заводы или институты по ракетной технике» у них есть такие установки, и есть сжиженный кислород. Сейчас они им активно торгуют. Поэтому можно взять у них в аренду специальную бочку, и они вам будут ее регулярно заправлять. Тогда не надо тратиться на покупку дорого генератора кислорода.

Если покупать Европейский генератор, то он с воздушными фильтрами, высушивателем воздуха, с двумя ресиверами и компрессором (на 20 тонный осетровник) будет стоить: 32.000 €.

Конусный оксигенаторы (на 20 тонный осетровник) будут стоить примерно 4.000 €.

4. Механический фильтр

. Лучше конечно купить микросетчатый, барабанный фильтр, но можно построить полочный отстойник или фильтровать через плавающие полиэтиленовые гранулы (сырье для ПЭТ бутылок), тогда будет стоить не дорого. Но удобнее работать с барабанным, самопромывающимся, микросетчатым фильтром.

Если брать в ЕС для осетровника 20 тонн, то:

Мальковый цех — 7.000 €. Производственный цех — 10.000 €

Еще, хорошо бы усилить микросетчатый фильтр гидроциклоном, тогда меньше потребуется воды для обратной промывки.

5. Биологический фильтр.

Можно сделать очень дешевый и компактный биофильтр работающий на песке (1000-2000м2/м3). Так называемый «псевдо сжиженный слой». Строительство обойдется дешево, но он очень капризный, за ним нужен постоянный контроль. Если остановиться насос на 2 часа, то песок осядет и цементируется, и вы останетесь без биофильтра! Вот Американцы – фанаты этих типов биофильтров. Для орошаемого фильтра придется покупать пластиковую загрузку, но например для 20 тонника это стоит примерно 10.000 €. Дальше нужно будет собрать каркас, обтянуть пленкой и сделать наверху разбрызгиватель. Еще не забыть про воздушный вентилятор.

6. Защита от аварий.

Это лучше все купить в Европе. Датчики давления, скорости жидкости, содержания кислорода в воде и сигнализаторы уровня воды. Дизель-электрогенератор с авто запуском.

Сколько будет стоить такая самодельная УЗВ, трудно сказать, надо считать основываясь на местный рынок рабочей силы и доступных материалов.

Типы бассейнов для УЗВ

Рисунок 2. Типы бассейнов для УЗВ: овальный, круглый и прямоугольный

Шкала оценок бассейнов УЗВ (по пятибальной шкале):

Какими бывают биофильтры?

Все биологические фильтры можно разделить на группы по двум признакам:

  • По типу используемых микроорганизмов выделяют аэробные и анаэробные биофильтры. При устройстве первых необходима хорошая вентиляция. Фильтры с анаэробной загрузкой устанавливают в герметичных емкостях;

  • По типу выполняемой загрузки выделяют фильтры с сухой или с мокрой загрузкой. В первом случае, на фильтр периодически подается очищаемая жидкость. При мокром типе загрузки камера с биофильтром полностью заполнена очищаемой жидкостью.

Проект системы

Рециркуляционные системы применяются там, где воды недостаточно для «вымывания» загрязнений из бассейнов с рыбой. Благодаря узлу очистки, в мини УЗВ достигается «удаление» аммония и других загрязнений, также как и в проточной системе.

Ключом успешного производства в рециркуляционной системе является использование экономически эффективных узлов обработки воды. Она вовлекает процессы удаления твердых загрязнений, окисления аммония и нитрита, аэрации и оксигенации воды (Рисунок 1). Далее следует описание отдельных процессов обработки воды, на которые необходимо обратить внимание при использовании мини УЗВ в аквакультуре.

Твердые частицы

Основными компонентами аквакультурных кормов являются белки, углеводы, жиры, зола и вода. Часть корма, не усвоенная рыбами, выделяется в виде органических загрязнений (частицы фекалий). Эти частицы, в совокупности с несъеденным кормом, расщепляются бактериями, снижают концентрацию кислорода и приводят к выделению аммония. С целью минимизации их влияния на качество воды, необходимо удалять их настолько быстро, насколько это возможно. Загрязнения можно разделить на четыре категории: осаждаемые, взвешенные, плавучие и растворенные. В рециркуляционной системе первые два типа вызывают особые опасения, тогда как другие два становятся проблемой только при очень слабом водообмене.

Осаждаемые частицы

Обычно контролировать концентрацию осаждаемых частиц проще других категорий, и их нужно выводить как можно скорее. К этому типу загрязнений относятся частицы, которые в спокойных условиях оседают в течение одного часа. Их можно удалить путем осаждения в цилиндрическом бассейне (где они накапливаются на дне в центре), либо их переводят во взвешенное состояние путем постоянного перемешивания и затем удаляют с помощью фильтра или емкости отстойника. Процесс осаждения можно улучшить добавлением блока изогнутых наклоненных труб (трубчатый отстойник) внутрь отстойника для снижения турбуленции потока и его равномерного распределения.

Взвешенные частицы

С точки зрения рыбоводов, различие между осаждаемыми и взвешенными частицами только одно. Последние, в спокойных условиях, не оседают в толще воды через час, и не могут быть удалены в процессе осаждения. Не всегда этот тип загрязнений фильтруется правильно. Если оставить взвесь в воде, то она существенно снизит количество рыбы, которое можно вырастить. Взвешенные частицы разрушают жабры рыб. Самый популярный метод удаления этих загрязнений заключается в механической фильтрации. Распространены два типа фильтров: сетчатый и с гранулированным наполнителем (песочный или гранулы).

Всплывающие и растворенные частицы

Тонкодисперсные взвешенные частицы (диаметром менее 30 мкм) являются основной частью взвеси в УЗВ. Они повышают потребление кислорода и разрушают жабры рыб. Кроме того, растворенные органические частицы (белки) могут внести большой вклад в потребление кислорода.

Тонкодисперсные и растворенные частицы нельзя удалить осаждением и механической фильтрацией. Для этой цели применяется пенное фракционирование (протеиновый скиммер). Процесс фракционирования заключается в введении пузырьков воздуха на дно узкого столба воды. Поднимаясь, на границе воды/воздуха они создают пену. Затем пена удаляется из колонки фракционирования в емкость сбора загрязнений. Концентрация частиц в этой емкости может быть в 5 раз выше, чем в культуральном бассейне. Эффективность пенного фракционирования зависит от свойств воды (концентрации соли, температуры, pH и т.д..), но сам процесс существенно снижает мутность и кислородное потребление системы.

Азот

Общий аммонийный азот (TAN) состоит из двух фракций, неионизированного аммония (NH3) и ионизированного аммония (NH4+) и продуктов белкового метаболизма. TAN выделяется через жабры рыб и продуцируется бактериями, которые разлагают органические частицы в воде. Неионизированная форма чрезвычайно токсична для рыб. Доля TAN в неионизированной форме зависит от pH и температуры воды. При pH 7.0 большинство TAN находится в ионизированной форме, тогда как при pH 8.0 – преобладающей становится неионизированная форма. Хотя летальная концентрация аммонийного азота для многих видов не установлена, его эффекты в сублетальной концентрации известны. Важнейшим из них является замедление роста. Как правило, концентрация неионизированного аммония не должна превышать 0.05 мг/л.

Температура (°C)
pH 6 8 10 12 14 16 18 20 22 24 26 28 30
7.0 .0013 .0016 .0018 .0022 .0025 .0029 .0034 .0039 .0046 .0052 .0060 .0069 .0080
7.2 .0021 .0025 .0029 .0034 .0040 .0046 .0054 .0062 .0072 .0083 .0096 .0110 .0126
7.4 .0034 .0040 .0046 .0054 .0063 .0073 .0085 .0098 .0114 .0131 .0150 .0173 .0198
7.6 .0053 .0063 .0073 .0086 .0100 .0116 .0134 .0155 .0179 .0206 .0236 .0271 .0310
7.8 .0084 .0099 .0116 .0135 .0157 .0182 .0211 .0244 .0281 .0322 .0370 .0423 .0482
8.0 .0133 .0156 .0182 .0212 .0247 .0286 .0330 .0381 .0438 .0502 .0574 .0654 .0743
8.2 .0210 .0245 .0286 .0332 .0385 .0445 .0514 .0590 .0676 .0772 .0880 .0998 .1129
8.4 .0328 .0383 .0445 .0517 .0597 .0688 .0790 .0904 .1031 .1171 .1326 .1495 .1678
8.6 .0510 .0593 .0688 .0795 .0914 .1048 .1197 .1361 .1541 .1737 .1950 .2178 .2422
8.8 .0785 .0909 .1048 .1204 .1376 .1566 .1773 .1998 .2241 .2500 .2774 .3062 .3362
9.0 .1190 .1368 .1565 .1782 .2018 .2273 .2546 .2836 .3140 .3456 .3783 .4116 .4453
9.2 .1763 .2008 .2273 .2558 .2861 .3180 .3512 .3855 .4204 .4557 .4909 .5258 .5599
9.4 .2533 .2847 .3180 .3526 .3884 .4249 .4618 .4985 .5348 .5702 .6045 .6373 .6685
9.6 .3496 .3868 .4249 .4633 .5016 .5394 .5762 .6117 .6456 .6777 .7078 .7358 .7617
9.8 .4600 .5000 .5394 .5778 .6147 .6499 .6831 .7140 .7428 .7692 .7933 .8153 .8351
10.0 .5745 .6131 .6498 .6844 .7166 .7463 .7735 .7983 .8207 .8408 .8588 .8749 .8892
10.2 .6815 .7152 .7463 .7746 .8003 .8234 .8441 .8625 .8788 .8933 .9060 .9173 .9271

Доля токсичной (неионизированной) формы NH3 в растворе при различных значениях кислотности и температуры среды

Нитрит (NO2—) является продуктом окисления аммония. Нитрифицирующие бактерии (Nitrosomonas) используют аммоний в качестве источника энергии для роста. Как побочный продукт их активности образуется нитрит. Эти бактерии лежат в основе биологической фильтрации. Они растут на поверхности наполнителя фильтра и, в некоторой степени, на других компонентах рециркуляционной системы, включая трубы, клапаны, бассейн, стенки и т.д.. Хотя нитрит не так токсичен для рыб, как неионизированный аммоний, он все равно опасен и должен выводиться из системы. Его концентрация не должна превышать 0.5 мг/л в течение длительного времени. К счастью, бактерии рода Nitrobacter, также находящиеся в биологическом фильтре, используют нитрит как источник энергии, и переводят его в нитрат.

Читайте также:  Victory 1000w конвектор инструкция

Нитраты мало волнуют рыбоводов. Исследования показали, что гидробионты устойчивы к чрезвычайно высоким концентрациям нитратов (более 100 мг/л) в воде. Обычно в системе такие значения не достигаются. Нитрат вымывается в ходе обслуживания (сливание осадка или обратная промывка фильтра), либо утилизируется в процессе денитрификации, которая протекает на компонентах системы, например, в отстойнике. Денитрификация, преимущественно, обусловлена метаболизмом анаэробных бактерий, которые продуцируют газообразный азот из нитрата. В ходе аэрации азот выходит в атмосферу.

Контроль азотсодержащих соединений

Контроль концентрации неионизированного азота (NH3) в бассейне является приоритетной задачей в цикле обработки воды. Для сохранения безопасной концентрации, аммоний должен быть «удален» в количестве, эквивалентном образовавшемуся. В ходе биологической фильтрации субстрат с большой площадью поверхности обеспечивает место для прикрепления и роста бактерий. Обычно в качестве субстрата (биозагрузки) используются гравий, песок, пластиковые шарики, пластиковые кольца и пластины. Структура субстрата и характер его взаимодействия с грязной водой определяют эффективность фильтра.

Технология рециркуляции применяется часто тогда, когда недостаточно воды для вымывания загрязнений из культуральной емкости. В большинстве случаев, проточная система имеет водообмен 380 литров в минуту для поддержания культуры в одной емкости. С помощью рециркуляции воды через узел очистки, который «удаляет» аммоний, удается достичь производительности, аналогичной протоке.

Прототип небольшой системы

Проект рециркуляционной системы, используемой в образовательных целях, должен принимать во внимание ряд требований. Первостепенным является учет того, что управлять ей будет низкоквалифицированный персонал. В связи с этим, система должна прощать некоторые ошибки оператора. Для её реализации каждый компонент рассчитан на сверхнормированную производительность или емкость. Это не означает, что система будет сложной и автоматизированной. Напротив, студенты вовлекаются в учебный процесс для получения навыков работы с аквакультурой, поэтому желательна ручная работа и забота о системе.

Во многих случаях, она должна работать «в одиночку», с минимальным вовлечением посторонних физических мощностей. Кроме того, для её установки, комнату или лабораторию не нужно модифицировать и ломать. Установка должна работать тихо.

Общий макет

Модель системы с рециркуляцией воды рассчитана на кормление до 90 килограммов рыбы, независимо от числа особей или конфигурации бассейнов. Узел очистки воды и другие компоненты принимают во внимание все описанные выше аспекты (Рисунок 1). Она состоит из 4 основных компонентов, бассейна для удаления твердых частиц, бассейна для нитрификации и двух бассейнов с рыбой (Рисунок 2). Кроме того, система имеет воздушный компрессор низкого давления, погружаемый насос 1/5 hp (л.с.), линию доставки и дренажную линию, сигнализацию. В общем, модель занимает более 12 м2 и обходится в 2800$.

Бассейн для удаления твердых частиц

Грязная вода со дна культурального бассейна, под действием силы тяжести, поступает по 1-1/2 дюймовой трубе в один конец бассейна для грубой очистки. Он имеет ширину 90 см, длину — 120 см, высоту — 108 см и скошенное дно (примерно 24 градуса) от задней к передней стенки (Рисунок 3). Как только вода поступает в бассейн, она сталкивается с «верхней» перегородкой и вынуждена двигаться вверх через, поддерживаемую трубой, зону осаждения, состоящую из двух блоков (3см х 3см х 7см) с коммерческим наполнителем (Part #LS42A, Aquatic Ecosystems, lnc.). Как только вода проходит через зону осаждения, тяжелые частицы (несъеденный корм и фекалии) оседают на дно или наполнитель фильтра. Скошенное дно позволяет осадку скапливаться у передней стенки, откуда его можно откачать. Очищенная вода проходит через два выхода, выполненные в виде двух срезанных по верхней стороне труб диаметром 1.5 дюйма. Она просачивается сквозь две вертикальные стенки: из грубого полиэстерового волоконного фильтра, перпендикулярного потоку (Part #PF-2, Aquatic Ecosystems, lnc.), и тонкого полиэстерового волоконного фильтра (Part #PF-1, Aquatic Ecosystems, lnc.), где задерживаются мелкие частицы. Жесткость материала обеспечивают прослаиванием его через две пластины из пластиковой сетки (Part #N1170, Aquatic Ecosystems, lnc.). В вертикальном положении фильтры удерживали направляющие, расположенные по бокам емкости. Они изготовлены из деревянных (1 х 1 дюйм) или U-образных стекловолоконных реек. Вода покидала бассейн фильтр через фитинг на его конце и под действием силы тяжести устремлялась в бассейн для нитрификации.

Бассейн для нитрификации

Бассейн для нитрификации принимает очищенную воду, которая по-прежнему содержит высокую концентрацию аммония. Он служит для снижения аммония и нитрита, перед возвращением воды в культуральный бассейн. Размеры и особенности строения емкости идентичны бассейну для фильтрации твердых частиц, за исключением отсутствия перегородки. Хотя скошенное дно необязательно, оно помогает концентрировать биологические частицы, которые ускользнули от биологической фильтрации. В качестве аппарата для системы был выбран плавучий ротационный биофильтр. Предпочтение отдано ему потому, что он имеет простое строение и обслуживание. Вращение барабана осуществляется потоками воды или воздуха. В данном проекте предусмотрено вращение слабым (8 л/мин) потоком воды от погружаемого насоса. Ротационный биофильтр приобретался в полной комплектации (Part #FFRBC, Aquatic Ecosystems lnc.), однако его конструкционные детали описаны в приложении A. С помощью погружаемого насоса (1/5 л.с.) (Model #2300, Simer Pump Со.) через 1.5 дюймовые ПВХ трубы обработанная вода нагнеталась из бассейна для нитрификации (65-80 л/мин) в бассейн с рыбой.

Линия подачи воды и гидравлическая нагрузка

Поток воды из бассейнов с рыбой под действием силы тяжести направляется в узел очистки. Когда насос в бассейне для нитрификации выключен, вода во всех емкостях достигает «статического уровня». Важно, чтобы верхняя часть бассейнов для обработки воды была эквивалента или больше максимального «статического» уровня воды в системе. Внутренний диаметр дренажа для грязной воды может быть от 1.5 до 2 дюймов. Использование труб большого диаметра приводит к оседанию в них загрязнений. С другой стороны, трубы слишком маленький диаметр снижает поток воды в очистные бассейны, вызывают падение уровня воды ниже операционного минимума (ротационный биофильтр падает на дно). Уровень «динамической воды» (уровень воды при рабочем насосе) в бассейне с рыбой должен быть на 4-6 дюймов выше, чем в очистных бассейнах.

Важно отметить конструктивные детали дренажной линии в мини УЗВ. Все углы при повороте труб имеют тройник фитинг с затычкой на открытом конце. Это позволяет очищать дренажную линию. Трубы необходимо прочищать в случае, когда разница динамических уровней воды (потеря давления) в бассейнах с рыбой и очистных бассейнах станет больше 8-9 дюймов. Обслуживание линии описано в соответствующей главе.

Контроль температуры

Выбор температуры зависит от предпочтений культивируемого вида. Для большинства тепловодных видов идеально подходит диапазон 24-27°C. Примите к сведению, что в водных биологических системах более высокая температура ускоряет наступление катастрофы в случае ошибок. Если температура воздуха соответствует данному диапазону, то дополнительный обогрев не требуется. Тем не менее, если комнатная температура ниже, достаточно аквариумного нагревателя.

Представленная модель мини УЗВ имеет аквариумный нагреватель мощностью 300 Вт в бассейне механической очистки. Каждый нагреватель (Model #VТ300, aquatic Ecosystem, lnc.) в системе имеет регулируемый термостат. Термостат выставлен на минимальную температуру. Если комнатная температура ниже 24°C, потребуется больше нагревателей.

Культивирование холодноводных видов требует температуры ниже 24°C. Хотя температуру в квартире можно поддерживать на уровне 18°C или ниже, не исключена потребность в охлаждении воды. Аппараты для охлаждения воды стоят дорого и существенно удорожают систему (1000-1600$).

Удаление тонкодисперсных частиц

Тонкодисперсные частицы удаляются с помощью простейшего скиммера аэрлифтного типа (Part #FMS-4, Aquatic Ecosystems, lnc.). Он располагается в одном из бассейнов и аккумулирует обогащенную загрязнениями пену во внешнем контейнере. Так как вода в обоих бассейнах с рыбой смешивается в узле очистки, один скиммер обеспечивает контроль содержания тонкодисперсных частиц во всей системе.

Сигнализация

Вследствие интенсивного ведения культуры и промежутков, когда система остается без присмотра, рекомендуется использовать сигнализацию. В настоящей работе установлена простая сигнализация, связанная с системой автодозвона (Part #А-1, Aquatic Ecosystems, lnc.). Система отслеживает давление на линии подачи воздуха (Part #В601, Aquatic Ecosystems, lnc.), уровень воды в культуральных бассейнах (Part #2Р313, W.W. Grainger, lnc.), температуру воды во всей системе (Part #А-3, Aquatic Ecosystems, lnc.) и скорость водного потока на линии подачи (Part #6940-015, Ryan Herco, lnc.). В случае низкого давления воздуха, уровня воды, температуры, отсутствия циркуляции воды система автодозвона отсылает сообщение тревоги на четыре номера. Реципиент должен подтвердить прием сообщения в течение 30 секунд, либо система отправит сообщение на следующий номер.

Хотя сигнализация необязательна, спокойствие на 24 часа в сутки и 7 дней в неделю обойдется в 400 долларов.

Биопленка бактерий

Вода в рециркуляционной системе включает множество бактерий, простейших и микрометазои (Michaud, 2007). Некоторые из них вовлечены в разложение твердого органического вещества (Franco-Nava et al., 2004), другие – в разложение растворенных в воде веществ, включая растворенные органические вещества, аммоний, нитриты и нитраты (Sharrer et al., 2005; Itoi et al., 2006).

Микроорганизмы свободно плавают в циркулирующей воде на планктонной фазе, либо образуют агрегаты с защитным матриксом (собственно, биопленку) (Léonard, 2000; Michaud et al., 2009). Тем не менее, так как активность бактерий преимущественно реализуется в прикрепленном состоянии (Costerton et al., 1995; Davey and O’Toole, 2000; O’Toole et al., 2005), большинство из них в водной среде находятся в составе биопленок. Эти биопленки легко липнут к органическому или неорганическому субстрату и контактируют с водой (Lewandowski et al., 1993; MacDonald and Brözel, 2000; Watnik and Kolter, 2000; Characklis and Marshall, 1990; Costerton, 1999; Møller et al., 1998). Определяемые Zhu и Chen (2001b) как «вязкоупругий слой микроорганизмов», эти пленки являются местом активного метаболического обмена (Michaud, 2007).

Оборот воды в УЗВ

Под «установками замкнутого водоснабжения» понимают полную регенерацию и использование воды любое количество раз для водоснабжения бассейнов (рыбоводных емкостей).

Рисунок 1. Схема рыбоводческого хозяйства с установками замкнутого водоснабжения (УЗВ) для выращивания рыбы

При этом в УЗВ осуществляется:

  • очистка воды от загрязнений в процессе выращивания рыбы (органика);
  • поддержка надлежащего санитарного состояния воды на безопасном для выращиваемых рыб уровне;
  • восстановление как химического, так и газового режима воды;
  • обеспечивается температура для получения максимального эффекта от выращивания рыбы в УЗВ.

На фото осётр в УЗВ

В УЗВ потребность в свежей воде выявляется удаляемыми из УЗВ отходов — рыбоводного осадка, потерями воды на испарение в установке замкнутого водоснабжения, на протечки в оборудовании и на прочие цели, не связанные с качеством воды: заполнение емкостей для транспортировки рыбы и т.п.

На заметку. Обычная потребность УЗВ на пополнение потерь воды — 2-5 процентов за сутки от всего объема воды в системе.

Фото форель в установке замкнутого водоснабжения

Как сделать биофильтр?

Если на участке установлен обычный септик, то для повышения качества его работы, можно дополнительно установить биофильтр. Можно приобрести уже готовую к установке конструкцию. Этот вариант хорош тем, что можно очень быстро произвести модернизацию уже готового септика.

Однако готовые биофильтры – это вещь недешевая, поэтому многие хозяева решают изготовить эту часть очистной установки самостоятельно. Работа по изготовлению биологического фильтра проходит так:

  • Рядом с септиком подготавливается котлован для биологического фильтра;
  • В том случае, если используется готовая пластиковая емкость, то ее нужно не просто опустить в котлован, но и закрепить на уложенной на дно железобетонной плите. Для создания емкости для установки биофильтра можно использовать и другие варианты, например, сделать колодец из бетонных колец или выполнить монолитную конструкцию. В последнем случае, необходимо сначала построить опалубку и выполнить заливку раствором. Заливку производится послойно с уплотнением каждого слоя;

  • Подготовленный котлован на две трети объема наполняют засыпкой – керамзитом или иным подходящим материалом;
  • Производится обратная засыпка котлована. Если корпус колодца пластиковый, то засыпка производится не грунтом, а смесью, приготовленной из сухого песка и цемента (соотношение 5 к 1);
  • Устанавливается перекрытие на колодец, при этом необходимо предусмотреть систему вентиляции;
  • Крышка колодца должна быть утеплена. Проще всего для этих целей использовать пенопласт;
  • Из биофильтра следует организовать вывод в накопительный колодец или в канаву.

Биофильтр – это устройство, которое позволяет повысить качество очистки стоков. Установка биологического фильтра позволяет избежать необходимости устройства полей фильтрации.

Биологическая регенерация воды в УЗВ

При использовании УЗВ для разведения рыбы – осетров, клариевого сома, форели, судака, речного угря или теляпии — основным процессом биологической регенерации по химическому составу воды выступает освобождение воды, оборачиваемой в УЗВ, от основного компонента — соединений азота, который накапливается в системе замкнутого водоснабжения при жизнедеятельности разводимой рыбы в УЗВ.

При аэробной биологической очистке, осуществляется перевод азота органических соединений, содержащихся в УЗВ в не съеденных, растворенных кормах и в виде экскрементов в аммонийный азот, перевод аммонийного азота в неорганической форме, который появляется в процессе разложения загрязнений и выделяемого выращиваемой рыбой через почки, жабры и кожные покровы, в нитритную форму, а после в нитратную.

Этапы превращения азота производятся различными группами микробного населения биологической плёнки оборудования биологической очистки. Это финишный процесс аэробного превращения азотных соединений.

На заметку. Для получения икры в УЗВ целесообразно и лучше всего выращивать бестера, который быстрее созревает для дачи черной икры. Первый раз самка бестера даёт икры не более семи процентов от своего веса, далее выход икры возрастает до 20%! Обычный осётр даёт в два раза меньше черной икры.

Далее превращение нитратов в свободный азот (газ) осуществляется анаэробными бактериями при ограничении поступления кислорода. Этот процесс носит название денитрификация, и выполняется в денитрификаторах. При этом требуется поддержание энергетического питания бактерий подачей в систему этанола и мелассы. Газообразный азот выводится из УЗВ в окружающую атмосферу.

Читайте также:  Особенности системы парового отопления

На фото кормление речного угря в УЗВ

Фото содержание маточного стада осетровых в УЗВ

Нитрификация протекает в два этапа

На первом этапе окисляющие аммоний бактерии, переводят аммоний в нитрит. К числу этих бактерий относятся две филогенетические группы:

1. В морских системах. Род Nitrococcus, принадлежащий к β подклассу протеобактерий, и представленный двумя морскими видами (Koops and Pommerening-Röser, 2001); 2. В пресноводных системах. Гамма-подкласс протеобактерий, представленный кладами Nitrosospira и Nitrosomonas (Michaud, 2007).

Окисление аммония имеет следующий вид: NH4+ + 3/2 O2 → NO2— + 2H+ + H2O + 84 ккал моль-1

Сначала аммоний окисляется до гидроксиламина, как промежуточного продукта, а затем до нитрита. Процесс вовлекает два фермента: аммоний монооксидгеназу (AMO) и гидроксиламин оксид-редуктазу (HAO) (Tsang and Sukuki, 1982; Bock et al., 1991). Гидроксиламин является первым продуктом аэробного окисления. В анаэробных условиях образование нитрита из гидроксиламина снижается (van de Graaf et al., 1996).

На втором этапе нитрит окисляется до нитрата различными группами микроорганизмов, бактерий окисляющих нитрит (NOB). Эти бактерии включают четыре группы (Egli, 2003).

Основная группа, относящаяся к α подклассу протеобактерий, имеет лишь один род Nitrobacter, который подразделяется на четыре вида, два из которых морские (N. mobilis и N. gracilis, принадлежат β и γ подклассам протеобактерий, Koops and Pommerening-Röser, 2001). Другой род Nitrospira включает два вида, N. marina и N. mascoviensis (Ehrich et al., 1995), которые являются частью типа, принадлежащего δ подклассу протеобактерий (Michaud, 2007).

Реакция окисления нитрита в нитрат имеет следующий вид: NO2— + 1/2 O2 → NO3— + 17.8 ккал моль-1

В этот процесс вовлечено несколько ферментов: нитрит оксидредуктаза (NOR), цитохром a1 и a2, хинин и NADH дегидрогеназа (Bock et al., 1986; Bock et al., 1990).

Если механизмы нитрификации уже всесторонне изучены (van Rijn, 1996; Aoi et al., 2000; Koops and Pommerening-Röser, 2001; Egli, 2003; Tal et al., 2003; Sharrer et al., 2005; Michaud, 2007), то исследование флоры гетеротрофных бактерий началось сравнительно недавно (Michaud et al., 2006, 2009). Эти бактерии играют важную роль в потреблении кислорода, образовании субпродуктов метаболизма после лизиса клеток, вспышке инфекций рыб. Кроме того, они конкурируют с автотрофными бактериями за кислород и субстрат, и существенно ингибируют нитрификацию (Zhu and Chen, 2001a; Léonard et al., 2002; Michaud et al., 2006). Фактически, в биофильтре гетеротрофные бактерии развиваются быстрее и преобладают на внешнем слое наполнителя, непосредственно потребляя кислород из воды. Это пагубно сказывается на автотрофах, которые растут медленнее и в глубоких слоях наполнителя (Lewandowski et al., 1993; Zhu and Chen, 2002). Конкуренция имеет критическое значение в эффективности работы фильтра, окислении аммония. Она особенно актуальна, когда высока доступность органического углерода для гетеротрофных бактерий (Zhu and Chen, 2001b; Michaud et al., 2006).

Полносистемная установка замкнутого водоснабжения

Полносистемные УЗВ по выращиванию рыбы не получили распространения в промышленном производстве рыбы, т.к. при процессах денитрификации необходимо соблюдение условий для стабильного использования оборудования УЗВ.

Процессы денитрификации проходят по различным схемам, в подавляющем числе которых происходит образование имеющих резкий запах ядовитых конечных продуктов. Даже при небольшом отклонении от режима работы денитрификаторов в установках замкнутого водоснабжения, эти вещества обычно приводят к гибели всей разводимой рыбы.

Денитрификация сложна в управлении и не даёт полную гарантию по результату работы УЗВ.

Другие замкнутые системы по выращиванию рыбы, в которых отсутствует процесс конечной анаэробной денитрификации оборачиваемой воды, не могут называться УЗВ.

В них процесс переработки азотных соединений завершается на стадии нитратов. Уменьшение их содержания до уровня, безопасного для рыбы, осуществляется путём разбавления за счет поступления в УЗВ проточной воды.

При этом происходит удаление части оборотной воды, имеющей повышенное содержание нитратов.

На фото кормление тиляпии в установке замкнутого водоснабжения

Что это такое

Под громким названием «биофильтр» скрывается всего лишь одна из камер многокамерного септика, в которой созданы оптимальные условия для размножения колоний бактерий.

  1. В камере присутствует заполнение с большой площадью поверхности. В промышленно произведенных станциях глубокой очистки в этом качестве используются специальные пластиковые изделия, внешне напоминающие… обычные мочалки для посуды.
  2. Кроме того, жизнедеятельность аэробных (поглощающих кислород) бактерий требует насыщения сточных вод воздухом. Именно поэтому в пресловутых станциях глубокой биологической очистки камера биофильтра аэрируется: пузырьки воздуха нагнетаются к ее дну компрессором.

Обратите внимание: при недостатке кислорода среди культур, размножающихся в биофильтре, по понятным причинам доминируют анаэробные бактерии. Их способность к усвоению органики куда скромнее, чем у аэробных; однако очистке стоков они тоже способствуют.

Системы оборотного водоснабжения в УЗВ для выращивания рыбы

Тем не менее, системы оборотного водоснабжения с биологической очисткой воды, которые не имеют денитрификаторов, называют УЗВ.

Общепринято установками замкнутого водоснабжения называть системы, в которых пополнение свежей воды не превышает за сутки уровня в 30 процентов от объема оборотной воды. А связано это с тем, что термин способствует более легкому получению разрешительной документации вводимых проектов с органами власти.

Но нужно понимать принципиальную разницу – в УЗВ для разведения рыбы осуществляется регенерация всей оборотной воды по соединениям азота, а при подпитке устраняются только невозвратные механические потери. Подобные системы функционируютт в бессточном режиме.

В УЗВ по разведению рыбы только с аэробной биологической очисткой превращение азотных соединений заканчивается на стадии нитратов.

Нужно понимать, что в рекламных материалах по УЗВ показатели уровня замены воды на уровне в 5 – 10 процентов в сутки не совсем корректны. Уровень подпитки напрямую зависит от нагрузки установки по внесению кормов, и чем больше эта нагрузка (либо чем выше плотность содержания в УЗВ рыбы), тем нитраты быстрее накапливаются, и тем большая подпитка воды требуется.

Одна система УЗВ может работать как при 5, так и 20 процентов подпитки – всё зависит от нагрузки на неё.

Фото карпов кои, выращиваемых в УЗВ

Очумелые ручки

Цена готовой станции глубокой биологической очистки для семьи из двух-трех человек составляет не меньше 60 — 70 тысяч рублей. Вместе с тем септик достаточной производительности, сделанный своими руками, обойдется в 3-5 раз дешевле; однако он обеспечит куда худшую степень очистки.

При высоком уровне грунтовых вод почвенная доочистка становится проблематичной; сбросить стоки на рельеф или использовать для полива — тоже не вариант: запах канализации не знает пощады и разит наповал. Что делать?

Очевидное решение — прикрутить к одно- или двухкамерному септику биофильтр.

Общие принципы

  1. Наиболее эффективная схема — биофильтр с аэробными бактериальными культурами и принудительной аэрацией. При минимальном объеме он обеспечивает максимальную степень очистки стоков септика.


Это наиболее эффективное, но не единственное решение. Перед вами схема септика с орошаемым анаэробным фильтром.

  1. Эффективность потребует затрат. Забудьте про дешевые аквариумные компрессоры: их производительности будет недостаточно. Наш выбор — специальные компрессорные станции для септиков с производительностью 60-120 литров в минуту.

Компрессор на фото обладает производительностью в 60 л/мин.

  1. Просто подать воздух в нижнюю часть емкости биофильтра недостаточно. Одна вертикальная цепочка пузырьков будет аэрировать незначительную часть объема стоков. Простейший аэратор представляет собой заглушенную с одного конца канализационную трубку диаметром 40-50 мм с частой перфорацией, выполненной сверлом диаметром 4-5 миллиметров.

Совет: при достаточной производительности насоса можно при помощи тройников собрать несложную гребенку, которая будет насыщать воздухом весь объем емкости биофильтра.

Емкости

Мы уже выяснили, что емкость с аэрируемым биофильтром — это лишь одна из камер септика, последняя на пути сточных вод.

Из каких материалов она может быть выполнена?

  • Идеальное решение — полиэтиленовая емкость для воды. Как правило, в ее нижней части присутствует патрубок под сбросной вентиль; в нашем случае он пригодится для подключения компрессора. Разумеется, через обратный клапан: попадание сточных вод септика внутрь электрического воздушного насоса явно не в наших интересах.


Горизонтальная полиэтиленовая емкость — готовая секция для септика.

  • В кирпичном или бетонном септике возможно отгородить небольшую секцию во вторичном отстойнике и снабдить ее двумя переливами — входным и выходным.
  • Наконец, в роли емкости может выступить старая стальная бочка. Уберечь ее от ржавчины поможет простая инструкция: наружная и внутренняя поверхности покрываются двумя слоями битумной мастики.

Заполнение

Собственно, наиболее доступные варианты нами уже упомянуты.

  • Керамзит — максимально дешевое заполнение. Большая площадь поверхности обеспечивается его пористой структурой.


В качестве заполнения используется керамзит.

  • Несколько дороже (но и несколько эффективней)… да-да, пластиковые мочалки для посуды. Они укладываются в емкость без уплотнения, заполняя весь ее объем.

Показатели продуктивности УЗВ

Продуктивность рыбы в УЗВ

При разведении в УЗВ сибирского (ленского) осётра, радужной форели от начальной массы в 3 грамма за 12 месяцев рыбы достигают массы в 1,5 кг. Для достижения подобного веса при прудовом разведении необходимо 2,5 – 3 года.

При выращивании клариевого (африканского) сома от его зарыбления в УЗВ (масса малька 3 гр) до достижения веса в 1,2 килограмма проходит 6 месяцев, в естественных условиях клариевый сом в нашей стране не растёт.

Речной (европейский) угорь, судак набирают вес в УЗВ от 1 грамма до 350 гр за 1 год.

Разводимая в установках замкнутого водоснабжения тиляпия за год набирает вес 700 грамм.

Виды рыб, которые с успехом выращивают в УЗВ

На заметку. В УЗВ возможно и выращивание такой рыбы, как карп. Из икры за 9 месяцев получают товарного карпа весом в полкило (в пруду карп набирает данную навеску только к 3-м годам).

В УЗВ возможно получать с квадратного метра используемой площади от одного центнера до 1,5 тонн рыбы в год.

Экономическую эффективность работы УЗВ, окупаемость вложений перед созданием рыбоводного предприятия целесообразно просчитать в бизнес-плане .

ПРИНЦИП РАБОТЫ БИОЗАГРУЗКИ В ОЧИСТНЫХ СООРУЖЕНИЯХ

Известно, что биологическую загрузку ББЗ 5.5.5 способно заселять большинство микроорганизмов в фазе роста. Их прикрепление осуществляется с помощью экзополимеров, синтезируемых бактериями. Закрепившись на сетке, они начинают активно размножаться до образования пленки определенной толщины.

Толщина биопленки на блоках ББЗ может достигать 2-3 мм, в результате чего происходит расслоение видов бактерий, т.е. на верхней поверхности образовываются аэробные бактерии, а на внутренней – анаэробные. Благодаря такой способности процессы окисления органики восстановления соединений азота происходят более эффективно. Со временем омертвевшие клетки отпадают с поверхности загрузки и выводятся из системы посредством применения специализированных устройств – эрлифтов.

Эффективность биозагрузки обосновывается тем, что в биопленках фиксированные микроорганизмы демонстрируют в основном более высокую специфическую активность, чем в свободных культурах. Происходит более эффективное поглощение растворенных и дисперсных органических загрязнений и очищение стоков. Ускоряется процесс нитро-денитрификации. Они гораздо жизнеспособнее и не так чувствительны к токсичным загрязнениям. Проходя через блоки ББЗ, вода отфильтровывается от растворенных и нерастворенных примесей органического и неорганического происхождения.

Органические вещества при попадании на биопленку окисляются и используются бактериями в качестве питания. За счет этого происходит рост и самовоспроизводство активной биомассы. Омертвевшие клетки биопленки вымываются вместе со стоками, тем самым предотвращая заиливание.

Дополнительные моменты

Также для выращивания рыбы используется такое оборудование:

  • Ультрафиолетовые лампы. Они необходимы для проведения обеззараживания воды.
  • Оксигенератор. Позволяет насыщать воду требуемым количеством кислорода.
  • Озонатор. Необходим для обеспечения среды проживания озоном.
  • Инкубаторы. Требуются в случаях, когда рыба разводится для икры.
  • Кормушки. Позволяют обеспечивать дозированную подачу питания в требуемое время.

Что понадобится дальше для разведения осетров в УЗВ?

Для небольшого рыбного хозяйства предлагается комплекс для разведения осетра в домашних условиях, весом в 1 тонну по цене 1, 1 млн. руб. , общей площадью 36 кв. м, с 4 емкостями для воды, и потреблением ресурсов с 1, 7 м3 в день.

Если необходимо организовать производство 2 тонн рыбы в год, то можно приобрести комплекс за 1,7 млн. руб. с большим количеством бассейнов.

Для масштабного рыбного хозяйства предлагается модульное оборудование из 8 бассейнов по цене 2,5 млн. руб.

За сравнительно небольшое вложение можно организовать свой прибыльный беспроигрышный бизнес по разведению шиншилл или рыбы, который будет востребован потребителями всегда.

  • https://RibnyDom.ru/akvarium/chertej-mini-yzv-svoimi-rykami-iz-dostypnyh-materialov.html
  • https://GidFermer.com/zhivotnye/ryba/uzv-dlya-vyrashhivaniya-sxema-oborudovaniya.html
  • https://agro365.ru/uzv.html
  • https://aquavitro.org/2016/07/09/model-uzv-rukovodstvo-po-proektirovaniyu-i-upravleniyu/
  • https://zen.yandex.ru/media/id/5c370e375c17e000a986129b/5cbd851782637e00b3da7abe

ИСПОЛЬЗОВАНИЕ ББЗ В АЭРОТЕНКАХ

Биологическая очистка стоков от загрязнений, находящихся в воде в растворенном, коллоидном и взвешенном состояниях, происходит в специальных сооружениях – аэротенках — и осуществляется сообществом различных микроорганизмов. Они с помощью выделения ферментов расщепляют органические вещества до простых неорганических, в конечном счете до Н2О и СО2.

В аэрационных реакторах ил находится во взвешенном состоянии в виде отдельных хлопьев. Причем от концентрации этих хлопьев и зависит интенсивность биологического метода очистки.

Если нагрузка на ил по загрязняющим веществам высока, то вероятность обеспечить нужную степень очистки и нужное качество воды на выходе мала, т.к. ила может не хватить для окисления органики. Малая нагрузка также нежелательна, так как ил будет самоокисляться, и произойдет снижение рабочей дозы его в аэротенке.

Для поддержания оптимального соотношения между дозой и нагрузкой в биореакторах необходимо использовать технологическую загрузку, на которой происходит развитие прикрепленной микрофлоры.

Многие аэротенки, построенные в советское время, находятся в эксплуатации без проведения реконструкции длительные сроки. Они устарели и не соответствуют современным природоохранным требованиям, предъявляемым к очистке и обеззараживанию сточных вод, не обеспечивают достижение нормативных показателей на выпуске с очистных комплексов в водоем рыбохозяйственного назначения.

При проведении реконструкции коридорных аэротенков, которые раньше пользовались особой популярностью при строительстве очистных сооружений, необходимо установить полипропиленовую загрузку, которая представляет собой сетчатый блок размерами 500х500х500 мм. Внутри блоков будет развиваться активная биомасса, улучшаться процесс очистки. Она предотвращает вынос взвешенных частиц из системы и поддерживает необходимую дозу активного ила, способствуя очищению загрязнений высокой концентрации. Благодаря подобным действиям увеличивается площадь активной поверхности, и снижаются эксплуатационные затраты на обслуживание.

Оцените статью