Оценка эксплуатационных качеств систем водоснабжения. Инструмент для успешного проведения реформы ЖКХ
Успешное реформирование ЖКХ возможно только при условии, что степень достижения главной цели реформы – улучшения качества предоставляемых услуг – будет иметь конкретную количественную оценку. Например, при заключении договоров между потребителями (жителями) и управляющей компанией, эксплуатирующей внутренний водопровод, должны быть определены количественные показатели (шкала), по которым можно определить уровень качества водоснабжения, степень выполнения принятых обязательств и обоснованность затрат на обеспечение предоставляемого качества водоснабжения.
Несмотря на внешнюю простоту такого подхода, его практическая реализация весьма затруднительна. В первую очередь это вызвано тем, что в сложившейся системе эксплуатации систем водоснабжения управляющие эксплуатационные организации, взаимодействующие с потребителем воды (населением, арендаторами и т. д.), не являются производителями питьевой воды, качество которой количественно определяется нормативами (СанПиН, ГОСТ, СНиП) и может быть измерено и проверено тем или иным способом. Эти службы не создают водопроводные сети и оборудование, не занимаются водозабором и подготовкой воды. Их функции сводятся к обеспечению бесперебойного функционирования уже созданных систем, минимизации непроизводительных (бесполезных) потерь воды, рациональному использованию энергетических ресурсов и возможному сокращению экологического риска, вызываемого авариями в системах.
Поэтому целесообразно систему водоснабжения разделить на две части: головные сооружения (ГС), добывающие и перерабатывающие природную воду с помощью сложных физических, химических и био-технологий в жизненно важный продукт питания – питьевую воду (производящие товар), и систему подачи и распределения воды (СПРВ), оказывающую услуги по доставке товара (питьевой воды).
Эксплуатация СПРВ разделяется на эксплуатацию наружных систем подачи и распределения воды (ЭНСПРВ), обеспечивающую оптовые поставки воды, и эксплуатацию внутридомовых систем (ЭВСПРВ), которая поддерживает внутренние водопроводы в работоспособном состоянии и продает питьевую воду в розницу многочисленным потребителям и в первую очередь основной производящей силе общества – населению.
Количественные критерии качества работы ЭВСПРВ, собранные в отдельном документе для оценки потребителем и контролирующими организациями эффективности их работы отсутствуют.
Можно попытаться разработать эти критерии, обобщив и систематировав имеющиеся нормативные данные по отдельным звеньям и элементам системы водоснабжения, но даже беглый обзор разнообразных, зачастую неподдающихся реальной проверке (например, количество циклов работы запорной арматуры) требований СНиПов, СанПИНов, ГОСТов и других нормативных документов, позволяет утверждать, что практическое использование этих документов будет крайне затруднительным. Кроме того, каждая система водоснабжения по-своему уникальна, работает в свойственных только ей внешних условиях и гидравлических режимах, поэтому использование усредненных нормативных требований к эксплуатации конкретной системы, не позволят найти взаимопонимание между потребителями и управляющими эксплуатационными организациями.
Поэтому критерии качества работы ЭВСПРВ должны базироваться на теоретических исследованиях режимов их работы, эксплуатации, влияния на природные водные источники и экологию, которые свяжут разрозненные показатели современных нормативов в единую систему.
Во многих отраслях научной и производственной деятельности для принципиального понимания степени «полезности» функционирования сложных систем всеми заинтересованными сторонами успешно используется теория надежности. По определению, надежность – это свойство объекта выполнять свои функции в течение заданного промежутка времени с сохранением заданных эксплуатационных показателей. Для эксплуатации систем водоснабжения это можно сформулировать как свойство:
– обеспечивать потребителей водой в необходимом объеме и с требуемым качеством при заданных потерях воды, энерго- и трудозатратах на ее подачу;
– воздействовать в допустимых пределах на компоненты окружающей среды (например, при перекладке участков наружных сетей) в течение срока действия договора между потребителями и управляющей организацией. При этом, естественно, срок действия договора должен быть соизмерим со средним сроком службы систем.
Временная диаграмма процесса функционирования системы водоснабжения
Во времени функционирование системы состоит из интервалов исправной работы и сбоев, определяемых нарушением водоснабжения или эксплуатационных требований к системе (рис. 1). Поэтому проще оценивать количественно эксплуатационную надежность систем водоснабжения через коэффициент готовности, определяющий долю времени «нормального» функционирования системы за контрольный срок действия договора:
где Тр – время нормального функционирования системы;
Тв – продолжительность нарушений в системе.
Использование коэффициента готовности (равно как и других общеизвестных показателей надежности, например, вероятности безотказной работы, интенсивности отказов и т. п.) для оценки эксплуатационной надежности систем водоснабжения может дать положительный результат только на первой стадии формирования отношений между потребителями и управляющей эксплуатационной организацией (ЭВСПРВ), когда важна лишь сама возможность оценки качества эксплуатации, без учета множества особенностей. Например, нарушение подачи воды может быть полным или незначительным. Это может относиться к одному потребителю или какой-то их группе и т. д. Кроме того, экономическое обоснование эксплуатационных мероприятий на основании коэффициента готовности возможно только в общем виде.
Более дифференцированная оценка качества эксплуатации систем водоснабжения может быть получена с использованием преобразованного коэффициента готовности:
где Т – расчетное время (срок действия договора);
N – общее число потребителей в системе;
ni – число потребителей, у которых отмечено нарушение водоснабжения в течение времени t0,i;
j – общее число нарушений в водоснабжении.
Аргументом в пользу преобразованного коэффициента готовности является тот факт, что схожий показатель используется для оценки надежности энерго-систем в США. Однако и в таком виде коэффициент готовности (и, соответственно, его производная – эксплуатационные расходы) не отвечают на следующие вопросы: насколько успешно и рационально осуществляется эксплуатация системы, какие есть резервы для повышения качества водоснабжения и снижения издержек, связанных с ним. И самое главное – как разработать и оптимизировать стратегию эксплуатации системы, начиная с нынешнего ее состояния.
Ответить на поставленные вопросы может новый подход к эксплуатации системы на основе управления потенциальными отказами и экологическими рисками системы водоснабжения организационными методами (оптимизация ремонтных стратегий, мониторинг систем и т. п.), разработанный в Московском государственном строительном университете.
В общем виде методика управления качеством эксплуатации состоит из следующих этапов.
1. Определяется степень нарушения водоснабжения, экологический риск и энергетические издержки при возникновении отказа в системе по следующим параметрам (рис. 2):
Оценка уровня эксплутационной надежности систем водоснабжения показателями величины, продолжительности и частоты нарушения работоспособности
– величина нарушения (отклонение параметров, возмущающее воздействие и т. п.);
– частота повторения подобных отказов на заданном промежутке времени. Между указанными параметрами устанавливается функциональная взаимосвязь как непосредственная, так и косвенная. Например, увеличение частоты возникновения отказов в системе влечет за собой увеличение производственной нагрузки на эксплуатационные подразделения, выполняющие аварийные ремонты. Это в свою очередь приводит к увеличению времени ожидания начала восстановительных работ и, соответственно, к увеличению продолжительности отказа. Каждому параметру отказа ставятся в функциональное соответствие экологические и экономические показатели, например, потери воды, вызванные утечками. Одновременно рассматриваются альтернативные варианты организационного управления отказами. В частности, увеличение мощности аварийного подразделения приведет к снижению потерь воды, но потребует дополнительных затрат на содержание персонала.
Полученные результаты позволяют дифференцированно оценивать качество эксплуатации системы на основе преобразованного коэффициента готовности, а также рассчитывать материальные издержки, связанные с возникшими отказами.
2. На этом этапе разрабатываются возможные стратегии выполнения эксплуатационных мероприятий, определяются их регулируемые параметры и выполняется вариантный расчет влияния эксплуатационных мероприятий в тех или иных условиях на качество водоснабжения, экологический риск при эксплуатации системы и все общественно значимые материальные затраты, связанные с эксплуатацией системы по рассматриваемой стратегии. Например, хорошо известная система планово-предупредительных ремонтов (ППР) предусматривает ремонты, устраняющие физический износ оборудования системы, выполняемые с определенной периодичностью и непредвиденные ремонты, восстанавливающие работоспособность оборудования и участков системы без изменения их физического износа, в случае аварий.
Графическое представление зависимости частоты отказов от соотношения межремонтного периода и среднего срока службы для строго периодических плановых ремонтов и минимальных аварийных
Для подобной стратегии ремонтов параметр отказов – частота, а также обобщающий экономический показатель – интенсивность эксплуатационных затрат (вся совокупность затрат, связанных с эксплуатацией, в единицу времени) зависит от назначенного межремонтного срока (рис. 3). Подобные зависимости, разработанные для большинства практически используемых стратегий эксплуатации систем водоснабжения позволяют, во-первых, оценить качество эксплуатации и материальные затраты, связанные с его обеспечением, при существующей эксплуатационной стратегии и, во-вторых, наметить пути оптимизации соотношения качества и связанных с ним затрат (рис. 4).
Экономически оптимальный межремонтный период при различных соотношениях затрат, связанных с плановыми и аварийными эксплуатационными ситуациями и относительной стоимостью плановых ремонтов
3. Заключительный этап управления качеством эксплуатации подразумевает пошаговую оптимизацию системы управления.
Оценив параметры отказов, а также величину экологического риска и непроизводительных потерь в сложившихся условиях, можно определить, при каких стратегиях эксплуатации системы водоснабжения будут достигнуты наилучшие показатели. Но для их реализации могут потребоваться принципиальные изменения в структуре эксплуатационных предприятий, финансовой деятельности. В современных условиях большая часть неисправностей оборудования устраняется в аварийном порядке. В то же время, как показали исследования, наилучшие показатели качества эксплуатации и экономической эффективности в большинстве случаев обеспечивают стратегии с различными вариантами плановых ремонтов. Чтобы выполнить переход к ним, потребуются, хотя бы на начальном этапе, дополнительные материальные средства.
Несмотря на значительные материальные издержки современных эксплуатационных действий, изъять часть средств из них на внедрение плановых мероприятий нельзя, поскольку эффект от реализации оптимальных стратегий будет получен не мгновенно, а через определенное время. Уменьшение вложений в аварийные службы на этом этапе однозначно приведет к ухудшению качества эксплуатации и экологической безопасности. Только когда в результате применения оптимальных стратегий эксплуатации будет достигнуто реальное снижение непроизводительных расходов ресурсов, уменьшение загрузки аварийных служб и, соответственно, снижение объемов их финансирования, за счет высвободившихся средств можно интенсифицировать внедрение оптимальных стратегий эксплуатации.
Для обоснования механизма перераспределения средств без ухудшения качества эксплуатации систем водоснабжения на каждом этапе внедрения оптимальных стратегий эксплуатации, а также для инвестирования их на начальном этапе, разработана методика, определяющая экономический эффект от внедрения по завершению каждого этапа, показатели качества эксплуатации в этот момент, а также дальнейшее направление материальных вложений.
Выводы
1. Эксплуатационные качества систем водоснабжения должны базироваться на требованиях потребителя и охраны окружающей среды.
2. Эти требования должны быть изложены в одном документе, который будет использоваться для оценки качества работы эксплуатирующих (управляющих) организаций.
3. Предложена методика управления эксплуатирующей организацией, позволяющая оптимизировать ее работу для достижения заданного качества эксплуатации.
Увеличение эксплуатационной надежности систем водоснабжения
При проектировании любого объекта учитывается множество факторов, которые в дальнейшем будут влиять на сам процесс строительства, оказывать воздействие на сооружение в ходе его эксплуатации. Кроме того, проектирование включает использование самых разных решений, которые повышают эффективность инженерных и технических систем, надежность работы объекта при его эксплуатации, увеличивают сроки эксплуатации, а также способствуют снижению затрат средств на строительство и общее водо-, тепло-, электропотребление, что крайне важно в условиях ограниченности как природных, так и экономических ресурсов.
Современные инженерные системы являются сложным комплексом технических решений. В целом современное инженерное сооружение можно считать объектом, пространство которого насыщено инженерными системами и элементами. Их объединение в единое целое является довольно сложной задачей. Огромное значение имеет их расположение и монтаж, которые в конечном итоге во многом определяют финансовую составляющую проектируемого объекта.
Выбор оптимальных решений важен как при проектировании систем водоснабжения, так и и водоотведения [3].
Проектирование закладывает основу создаваемых объектов и выполняется поэтапно, каждый этап подлежит согласованию с соответствующей организацией.
Проблема обеспечения надлежащего количества и качества воды является одной из наиболее важных и имеет глобальное значение.
Расчеты специалистов показывают, что ежегодный прирост безвозвратного водозабора воды составляет 4–5 %. При сохранении существующих темпов прироста населения и объемов производства человечеству грозит реальная опасность исчерпания пресноводных запасов воды. Данный факт свидетельствует о том, что необходимо сократить расход воды с помощью разработки новых методов технических решений при проектировании систем водоснабжения и водоотведения.
Существующая практика создания инженерных систем демонстрирует возрастающее внимание к уровню их эффективности [1].
Сокращение затрат и сроков на разработку и согласование проектных решений и их реализацию в ходе выполнения строительно-монтажных работ обеспечивает применение модульных решений в проектной и строительной практике.
Комплектные канализационные насосные станции (КНС), ставшие приоритетным решением водоотведения (канализования) за последние 5–10 лет, выпускаются готовыми к непосредственной установке в систему канализации. При наличии источника электроснабжения и возможности подать в резервуар сточную воду монтажа готовой к эксплуатации КНС может быть завершено через три недели строительно-монтажных и пусконаладочных работ.
Потребление этого типа изделий завоевывает все большую популярность. С учетом возрастающих требований к экологии в мегаполисах использование КНС позволяет исключить загрязнение окружающей среды. Повышающийся интерес проектных и строительно-монтажных организаций к КНС на базе стеклопластиковых резервуаров показывает перспективность данного направления в канализовании [4].
Примером внедрения модульных решений в проектную и строительную практику является применение модульных автоматизированных насосных станций (МАНС) для повышения давления (напора) в сетях внутреннего водопровода жилых, административных и производственных зданий.
При использовании МАНС предусматривается автоматическое подключение (отключение) рабочих насосных агрегатов (по схеме параллельной их работы) в соответствии с текущими условиями водопотребления (изменения расхода воды). В системах водоснабжения жилых и общественных зданий (относящихся к пространственным системам водоснабжения) считается правилом управление работой МАНС по критерию поддержания постоянного давления. Для обеспечения необходимого уровня энергоэффективности и плавности регулирования подачи при постоянном напоре (исходя из критерия поддержания постоянного давления при управлении работой насосов), с учетом характера эксплуатации МАНС в системах водоснабжения зданий, обязательно применение частотного регулирования привода насосных агрегатов [5].
Совмещение вопросов энергоэффективности и модульного проектирования инженерных систем в полной мере обеспечивается в случае применения в качестве основополагающего подхода при разработке и оценке таких систем методологии анализа стоимости жизненного цикла.
В теоретическом плане подход основан на учете стоимости жизненного цикла оцениваемого комплекса оборудования (инженерной системы) и предусматривает минимизацию совокупных затрат на строительство (реконструкцию), эксплуатацию и завершение использования. В общем виде стоимость жизненного цикла оборудования (инженерной системы) может быть описана следующей зависимостью:
LCC = CIC + CIN + CE + CO + CM + + CS + CENV + CD’+ ,
где LCC – стоимость жизненного цикла;
CIC – начальные затраты (цена приобретения оборудования с сопутствующими принадлежностями);
CIN – затраты на монтаж оборудования и ввод в эксплуатацию (включая пуско-наладку и обучение персонала);
CE – затраты на электроэнергию (для функционирования системы, включая привод, средства управления, и любые дополнительные устройства);
CO – оплаты труда персонала, обеспечивающего текущее обслуживание системы;
CM – затраты на сервисное обслуживание и ремонт (регулярный сервис и плановый ремонт);
CS – затраты на непроизводственные потери (простои оборудования вне эксплуатации);
CENV – компенсация на устранение последствий от воздействия на окружающую природную среду (загрязнения от работы основного и вспомогательного оборудования);
CD – затраты на ликвидацию и утилизацию (включая восстановление окружающей среды и ликвидацию вспомогательного оборудования);
К/Тсл – амортизационные отчисления;
К – капитальные вложения;
Тсл – нормативный срок службы.
Значительная величина в стоимости жизненного цикла оборудования составляет затраты на электроэнергию и техническое обслуживание [2].
Анализ тенденций и потребностей в области систем водоснабжения и водоотведения жилых и общественных зданий (основанный на рассмотрении применяемого инженерного оборудования, в том числе насосных станций, систем управления, автоматизации и диспетчеризации) позволил определить ряд проектных решений, применение которых позволит существенно сократить стоимость жизненного цикла таких систем. Наиболее актуальной является разработка следующих типовых решений:
– насосные системы хозяйственно-питьевого водоснабжения для жилых и общественных зданий;
– насосные системы противопожарного водоснабжения для жилых и общественных зданий;
– насосные системы водоотведения жилых и общественных зданий;
– использование тепловых насосов (вода-вода, воздух-вода и т.д.) в жилых и общественных зданиях, в том числе для обеспечения горячего водоснабжения;
– водоразборные сооружения для подачи воды в жилые, общественные и производственные здания;
– реконструкция повысительных насосных станций жилых и общественных зданий;
– модульные совмещенные насосные станции объединенных нужд хозяйственно-питьевого и противопожарного водоснабжения;
– автоматизация, диспетчеризация и контроль инженерного оборудования жилых и общественных зданий с использованием передачи данных по коммуникационным системам и организации единого рабочего диспетчерского пункта на базе персонального компьютера.
На данный момент на рынке представлено значительное количество различных инженерных решений и оборудования, в том числе с применением зарубежного опыта, которые определяют подходы по подбору и использованию при проектировании инженерного оборудования, применяемого при организации систем водоснабжения и водоотведения. Решения базируются на современных принципах и требованиях к инженерным системам с учетом представленного на рынке оборудования и опыта его эксплуатации.
Нормальная работа систем внутреннего водоснабжения и канализации является важным фактором комфортности местопребывания людей, а в ряде случаев – и их безопасности (при совмещении с системой противопожарного водоснабжения). Оснащение системы инженерным оборудованием должно осуществляться с учетом имеющихся нормативных требований к обустройству жилых и общественных зданий. Отсутствие единых (общеустановленных) стандартов в данном направлении инженерного оснащения приводит к неопределенности требований технических заказчиков, отсутствию критериев должного уровня работы оборудования, ошибкам на различных этапах при подборе и его использовании в проекте. Последствиями существующего положения являются нарушения в вопросах безопасности и их функциональные недостатки, означающие необоснованное (неэффективное) расходование ресурсов и, следовательно, несоблюдение требований закона [1].
С учетом возросших требований к качеству жилья и уровня используемых водоразборных систем и оборудования в жилых и общественных зданиях необходимо определение уровня соответствующих эргономических параметров. Кроме основных параметров водопотребления (расход, напор и качество воды), также следует отметить необходимость однозначного определения вопросов обеспечения и контроля уровня звукового давления как в помещениях зоны размещения монтажа инженерного оборудования, так и в примыкающих к нему помещениях.
За последние годы произошли существенные изменения в подходе к подбору инженерного оборудования (в т.ч. в плане исключения избыточности параметров) и в техническом уровне доступности оборудования. Разработка оптимальных решений при разработке проектов строительства и реконструкции требует наличия методического и технического (диагностического) обеспечения.
Основные исходные требования, которые должны предъявляться к проектным решениям: энергоэффективность, актуальность (использование инновационной составляющей), должная степень автоматизации и автономности, надежность, обеспечение качественных услуг для потребителей, технико-экономическая обоснованность и целесообразность (с учетом полного цикла эксплуатации инженерных систем и всех сопутствующих затрат).
При разработке документации необходимо обеспечить общую структуру подачи информации: исходные данные (условия, при которых целесообразно применять решение); общее описание (пояснение выгоды применения решения); инструкция по проработке решения под конкретную задачу (основные характеристики оборудования, особенности подбора, оформление документации); варианты применения решения, включая основные схемы функционирования.
Разработка и внедрение в практику современных проектных решений – это реальный путь, обеспечивающий совмещение вопросов энергоэффективности и модульного построения инженерных систем в ходе проектирования и строительства.
Для реализации основных особенностей систем водоснабжения зданий повышенной комфортности c массовым пребыванием людей при разработке проектной документации, по сравнению с современной практикой проектирования систем, необходимо выполнять многовариантное проектирование, анализируя надежность, функциональность, ресурсосбережение на всех этапах проектирования.
На начальных стадиях проектирования необходимо обеспечить не только водный, но и водохозяйственный и энергетический баланс здания, которое по количеству и разнообразию потребителей сопоставимо с крупным микрорайоном обычной застройки. В балансе следует подробно рассмотреть потребности в воде с выделением питьевой, хозяйственной, технологической, противопожарной потребностей. Анализ нескольких вариантов балансов с использованием оборотных, последовательных схем водоснабжения, утилизации тепловых ресурсов, возобновляемых источников энергии позволит оптимизировать состав систем, нагрузки на них, снизить общее водо-, тепло-, электропотребление.
Для повышения надежности целесообразно разделять системы различного назначения, так как надежность специализированных систем обычно выше, чем универсальных [5].
Все насосные агрегаты и другое оборудование должны иметь системы автоматизации, диспетчеризации и управления с возможностью ручного и дистанционного управления. Желательно эти системы интегрировать в автоматизированную систему управления зданием.
Размеры помещения для размещения насосных агрегатов, трубопроводов, водопроводной арматуры, электрических щитов силового оборудования и автоматики необходимо определять в соответствии с нормативными документами, а также с учетом удобств эксплуатации инженерного оборудования, расположенного в помещении насосной станции.
Шум и вибрация в помещениях здания от насосных агрегатов (кроме пожарных) не должны превышать допустимых значений, установленных в санитарных нормах.
Для обеспечения бесперебойной подачи воды необходимого качества потребителям в течение длительной эксплуатации внутридомовых систем (более 50 лет) при изменяющихся параметрах внутренних и наружных водопроводных сетей необходимо повышать надежность систем по герметичности. В связи с большим количеством мест водоразбора на надежность системы по герметичности значительное влияние оказывает качество и долговечность уплотнительных элементов. На гидравлическую надежность системы водоснабжения большое влияние оказывают потери воды, которые перегружают водопроводные сети и сооружения, в результате чего часть высокорасположенных потребителей не получает воду. Борьба с потерями воды и рациональное ее использование повышают общую гидравлическую надежность системы [3].
Энергосбережение в водоснабжении и водоотведении должно строиться на основе следующих мероприятий: учет водоподачи, затрат на энергоснабжение и сокращение их потерь; сокращение количества непроизводительного ручного труда (сокращение численности обслуживающего персонала); повышение КПД технологического оборудования за счет энергосберегающих технологий; создание автоматизированных информационных систем сбора данных и управления инженерными сетями и объектами; оперативность и оптимальность управления технологическими объектами; информированость общественности о результатах реализации мероприятий по энерговодосбережению.