Вентиляция отопление складских помещений

Отопление и вентиляция современных складских комплексов

Е. О. Шилькрот, канд. техн. наук, ОАО «ЦНИИпромзданий», ООО «НПО ТЕРМЭК»

В современном обществе индустрия переработки грузов занимает значительное место. От полноты и спектра логистических услуг по ответственному хранению и обработке грузов зависит качество и своевременность поставки продукции потребителям и, в конечном итоге, ее цена.

Строительство складских комплексов, оснащенных современными cистемами и оборудованием для хранения, приема и отправки товаров, интенсивно развивается.

В 2002–2004 годах ООО «НПО ТЕРМЭК» и ОАО «ЦНИИпромзданий» было выполнено проектирование и строительство систем отопления и вентиляции торгово-индустриального комплекса «Шерлэнд».

«Шерлэнд» — это современный торгово-индустриальный комплекс, включающий складские площади (26 000 м 2 ), офисные площади (6 000 м 2 ), прилегающую территорию (более 20 000 м 2 ) (рис. 1).

Мощности комплекса позволяют принять и осуществить одновременную загрузку-выгрузку 40 автомобилей объемом 82 м 3 , техническая оснащенность дает возможность выгружать 1 трак в течение 30 мин.

Рисунок 1. Торгово-индустриальный комплекс «Шерлэнд»

Комплекс расположен в 8 км от Московской кольцевой автомобильной дороги, рядом с Ленинградским шоссе (недалеко от аэропорта «Шереметьево-1»). Складская территория комплекса представляет собой сухие, отапливаемые помещения. Складские помещения оснащены современным оборудованием, а автоматизированная система складского учета позволяет обеспечивать высокую динамику обработки грузов на всех этапах логистической цепочки — от приема груза на склад и до его отгрузки. Автоматическая система управления позволяет отслеживать хранящиеся товары по ряду параметров (дате приема на склад, сроку реализации товаровладельцу и т. д.), что позволяет сделать процесс хранения эффективным и легко контролируемым.

Рисунок 2. План комплекса стеллажных складов «Шерлэнд»

Все склады оснащены 6-уровневыми стеллажами, внутрискладским погрузочно-разгрузочным оборудованием, АСУ складской деятельности, системами наблюдения, контроля, оповещения и т. п.

Блок складских помещений представляет собой 4-пролетное здание (рис. 2). В каждом пролете размещается стеллажный склад. Основные характеристики каждого склада представлены в табл. 1.

Таблица 1
Основные характеристики складских помещений торгово-индустриального комплекса «Шерлэнд»
№ п/п Помещение Размеры axbxh, м Площадь,
А, тыс. м 2
Объем, V,
тыс. м 3
Объем
стеллажей,
Vст тыс. м 3
1 Склад № 1 90×56×17 5,04 85,68 44,12
2 Склад № 2 108×56×17 6,05 102,22 52,95
3 Склад № 3 126×56×17 7,06 119,95 61,78
4 Склад № 4 135×56×17 7,56 128,52 68,19

Особенностью стеллажных складов является их большая насыщенность технологическим оборудованием (стеллажами для хранения грузов), высокая механизация технологического процесса, малое количество обслуживающего персонала. С точки зрения выбора систем отопления и вентиляции стеллажные склады могут быть отнесены к производственным помещениям с крупногабаритным оборудованием.

Требования к параметрам воздуха в складских помещениях, как правило, определяются техническим заданием на проектирование. Основное требование — равномерное в плане (и особенно по высоте) распределение температуры воздуха.

Анализ возможных схем и систем отопления стеллажных складов показал, что наиболее рациональной системой отопления будет система воздушного отопления с интенсивным перемешиванием воздуха в объеме помещения.

Такой системой является система воздушного отопления с подачей нагретого воздуха через направляющие сопла (рис. 3) [1, 2].

Рисунок 3. Схема системы воздушного отопления с направляющими соплами

Система воздушного отопления с направляющими соплами предназначена для помещений с крупногабаритным оборудованием, в которых она обеспечивает практически безградиентное распределение температуры воздуха по высоте.

Система обеспечивает эффективное отопление при минимизированных расходах воздуха, подаваемого через сопла с большой скоростью, и при значительных перепадах температуры при обеспечении нормируемых параметров микроклимата в рабочей зоне.

Направляющие сопла устанавливаются в верхней зоне помещения между стеллажами и подают нагретый воздух вертикально вниз в направлении рабочей зоны.

Энергоэффективность системы с направляющими соплами обеспечивается безградиентным распределением температуры воздуха по высоте, устранением перегрева верхней зоны помещений.

Схема системы воздушного отопления склада

Рисунок 5. Система воздушного отопления склада

Рисунок 6. Воздухораспределитель системы воздушного отопления склада

Схема системы воздушного отопления склада представлена на рис. 4, фрагменты системы — на рис. 5 и 6.

Следует коротко остановиться на системе вентиляции складских помещений. СНиП 2.11.01-85* «Складские здания» предписывает (если не выдвинуты специальные требования) предусматривать естественную общеобменную вентиляцию, обеспечивающую однократный воздухообмен.

Представляется, что указанное требование является чрезмерным.

Объемы современных складских помещений, даже при однократном воздухообмене, требуют на нагрев вентиляционного воздуха тепла примерно в 10 раз больше, чем для компенсации трансмиссионных потерь тепла.

Представляется необходимым изъять из нормативных документов требование об обязательном однократном воздухообмене, заменив его расчетом, обосновывающим действительную потребность помещения в наружном воздухе.

* Температура наружного воздуха.

** Температура внутреннего воздуха.

*** Расход тепла на вентиляцию рассчитан из условий однократного воздухообмена части объема помещения высотой 6 м.

В табл. 2 представлены расчетные тепловые нагрузки систем отопления и вентиляции складских помещений.

Каждый склад оборудован двумя приточными установками, расположенными в антресольных этажах. Приточные установки включают смесительные камеры с клапанами на наружном и рециркуляционном воздухе, что позволяет изменять соотношение наружного и рециркуляционного воздуха в процессе эксплуатации. В теплый период года, в режиме вентиляции, в склад подается только наружный воздух. В переходный и холодный периоды года, в режиме отопления, совмещенного с вентиляцией, количество наружного воздуха уменьшается в зависимости от его температуры и условий хранения продукции. Приточные установки оборудованы многоскоростными электродвигателями, что позволяет осуществлять количественное регулирование систем и обеспечивает их высокую энергетическую эффективность.

Для отопления складов комплекса «Шерлэнд» была запроектирована система воздушного отопления с направляющими соплами, дополненная периметральной системой водяного отопления с регистрами. Дополнительная система отопления была предусмотрена с целью предотвращения выхолаживания пристенной зоны складов. Так как стеллажи расположены практически вплотную к стенам; подача нагретого воздуха в пристенную зону была невозможна.

Удаление вытяжного воздуха из складов — естественное, через вытяжные шахты на кровле, совмещенные с шахтами дымоудаления.

Воздуховоды приточных систем проложены в межферменном пространстве вдоль проходов между стеллажами. Высота от среза приточного сопла до пола помещения — 13,5 м. Сети воздуховодов объединены попарно перепускным коробом, что позволяет осуществить 50-процентное резервирование воздушного отопления в каждом складе.

Расчет системы воздушного отопления с направляющими соплами выполнен в соответствии с «Рекомендациями по расчету отопительно-вентиляционных систем с направляющими соплами» [3].

При проектировании системы воздухораспределения в качестве критериев нами принимались следующие характеристики:

— минимальное число сопел, что обеспечивалось максимальной скоростью выпуска воздуха;

— максимальная температура подаваемого воздуха, что обеспечивало минимальный расход приточного воздуха;

— минимальные отклонения температуры и скорости воздуха в рабочей зоне в течение отопительного периода при изменении температуры приточного воздуха.

Таблица 2
Расчетные тепловые нагрузки систем отопления и вентиляции складских помещений торгово-индустриального комплекса «Шерлэнд»
№ п/п Помещение tн, °С* tв, °С** Расход тепла, кВт
Воздушное отопление Венти-ляция*** Водяное отопление Общий
1 Склад № 1 –28 12 174,3 402,0 46,7 623,0
2 Склад № 2 –28 12 164,8 486,3 46,7 697,8
3 Склад № 3 –28 12 189,1 567,2 46,7 803,0
4 Склад № 4 –28 12 390,3 607,7 109,7 1107,7

Обозначения: ∆t0 — разность температуры приточного воздуха и воздуха в помещении; d0 — диаметр сопла; LΣ — суммарный расход воздуха на систему; V0 — скорость выпуска воздуха; Lсопла — расход воздуха через сопло; H — геометрическая характеристика струи; Хmax — дальнобойность струи; Kн — коэффициент неизотермичности струи; Vр.з. — скорость воздуха в рабочей зоне

Результаты расчета системы воздушного отопления с направляющими соплами представлены в таблице 3.

Ширина ячейки, в которой развивается струя воздуха, выходящего из сопла, выбиралась из условий обеспечения равномерного распределения температуры и скорости воздуха в обслуживаемой зоне и условия развития струи без поперечного стеснения.

Монтаж и пусконаладочные работы системы были выполнены в 2003—2004 годах.

В процессе наладки были проведены измерения температуры и скорости воздуха в месте истечения струи, в рабочей зоне вдоль струи приточного воздуха в складе № 4.

В момент измерений температура наружного воздуха составляла tн = –0,4 °С; скорость выпуска воздуха из сопла и его температура соответственно: V0 = 22,6 м/с; t0 = 17,6 °С.

Измерения температуры и скорости воздуха показали:

— температура воздуха по высоте склада и площади рабочей зоны практически постоянна;

— скорость воздуха в рабочей зоне не превышает 0,35 м/с;

— распределение скорости воздуха вдоль оси струи близко к расчетному (рис. 7).

Таблица 3
Результаты расчета системы воздушного отопления с направляющими соплами (tн = –28 °C)
№ п/п Помещение ∆t0,
°С
d0, м LΣ,
м 3 /ч
V0,
м/с
Lсопла,
м 3 /ч
n,
шт.
Ширина
ячейки,
м
H, м Хmax,
м
Kн Vр.з.,
м/с
1 Склад № 1 20 0,075 35 250 25 396 90 9,0 21,6 11,9 0,58 0,5
2 Склад № 2 20 0,075 57 030 25 396 140 7,1 21,6 11,9 0,58 0,5
3 Склад № 3 20 0,075 71 750 25 396 180 6,5 21,6 11,9 0,58 0,5
4 Склад № 4 20 0,075 77 290 25 396 200 6,75 21,6 11,9 0,58 0,5

Рисунок 7. Распределение скорости воздуха вдоль оси струи

Вывод

Применение систем воздушного отопления, совмещенного с вентиляцией, с качественно-количественным регулированием и подачей воздуха направляющими соплами является перспективным для помещений стеллажных складов.

Литература

1. Пончек М. И., Живов А. М., Виноградский Л. С. Новый способ подачи воздуха с использованием направляющих струй // Новые системы отопления и вентиляции промышленных зданий. М., 1982.

2. Гримитлин М. И., Живов А. М., Пончек М. И., Шилькрот Е. О. Подача воздуха в помещениях отопительно-вентиляционными системами с направляющими соплами // Новое в воздухораспределении: Материалы семинара. М., 1983.

3. Рекомендации по расчету отопительно-вентиляционных систем с направляющими соплами. М.: ЦНИИпромзданий, ЛенПСП, ЛенВНИИОТ, 1984.

Совмещенные системы вентиляции и воздушного отопления для складских помещений на базе компактных приточно-вытяжных агрегатов

Д. В. Капко, руководитель сектора научных исследований ООО «НПО ТЕРМЭК», otvet@abok.ru

А. Е. Иванов, главный архитектор проектов АО «ЦНИИПромзданий», член Cоюза архитекторов РФ

Г. В. Протасов, главный специалист ООО «НПО ТЕРМЭК»

В статье приведено решение совмещенной системы вентиляции и воздушного отопления для торгово-складского комплекса, которое позволило обеспечить высокую энергетическую эффективность представленного проекта.

В ряде публикаций отмечаются значительные преимущества систем воздушного отопления для помещений больших объемов (производственных, торговых, складских) [3–5] и помещений и зданий с переменным режимом обслуживания (школы, студенческие аудитории, храмы) [2, 5]. Основными из них являются:

  • меньшие капитальные затраты ввиду совмещения в одном оборудовании системы вентиляции и отопления;
  • низкая тепловая инерция, ввиду этого большая гибкость при изменении нагрузки на систему отопления;
  • технически более простая реализация в помещениях с крупногабаритным оборудованием;
  • безградиентное распределение воздуха по высоте (при грамотном расчете и подборе воздухораспределителей).

В некоторых случаях системы воздушного отопления являются практически единственным технически реализуемым решением. Яркий пример такого решения – проект легкоатлетического манежа в г. Михайловград (с 1993-го – г. Монтана, Болгария) [1].

В данной статье приведен пример применения совмещенной системы вентиляции и воздушного отопления в торгово-складском комплексе «Касторама» (рис. 1) по адресу: Московская область, Ленинский район, с. п. Булатниковское, в районе пос. Битца, архитектурные и конструктивные решения которого были разработаны специалистами АО «ЦНИИПромзданий», инженерные решения внутренних систем жизнеобеспечения – ООО «НПО ТЕРМЭК».

Торгово-складской комплекс «Касторама»

Учет стандартов зеленого строительства

По желанию заказчика проектирование объекта велось с учетом требований зеленого стандарта LEED, в проекте были отражены требования следующих категорий этого стандарта:

  • экологическая рациональность, выбор участка – выбор места, доступность транспорта (общественного, автомобильного, велосипедного), контроль ливневых стоков, рациональность в освещении фасада;
  • эффективность в использовании водных ресурсов – использование сточных вод, сокращение объемов потребления воды;
  • экологически ответственный подход в вопросах энергосбережения и атмосферного воздуха: оптимизация энергетических затрат, экологическая оптимизация систем охлаждения и отопления, минимизация негативного воздействия на атмосферу;
  • строительные и отделочные материалы и ресурсы: оптимизация работы с отходами, управление отходами, использование переработанных материалов;
  • качество внутренней среды в помещениях – экологическая безопасность внутри помещения;
  • применение инноваций в проектировании – инновационный экологический дизайн.

Архитектурные и конструктивные решения

Для обеспечения соответствия зеленым стандартам в проект были заложены следующие архитектурно-планировочные решения:

  • устройство парковки для велосипедного транспорта;
  • увеличение толщины утеплителя в ограждающих конструкциях;
  • применение мембраны белого цвета на кровле для предотвращения перегрева;
  • применение энергоэффективных профилей остекления;
  • применение двухкамерных стеклопакетов с низкоэмиссионными стеклами;
  • снижение количества витражного остекления;
  • применение зенитных фонарей над кассовой зоной, а также в местах прохода посетителей и в коридоре административной зоны;
  • запрет курения во всем здании;
  • максимальное применение строительных материалов локального производства.

Архитектура торгово-складского здания решена в объеме прямоугольной формы, размеры которого в плане составляют 72,0 × 163,2 м.

Основной объем здания формируется помещением торгового зала площадью 9 000 м 2 , имеющим высоту 6 м до низа ферм. С юго-восточной стороны он соединяется с зоной открытой сезонной торговли, имеющей легкий навес из тентовых конструкций. С северо-западной стороны расположена двухэтажная часть здания, включающая в себя зону загрузки и административно-бытовой блок.

Ограждающие конструкции здания – многослойные сэндвич-панели толщиной 150 мм. Витражи, окна и входные двери выпол-няются из алюминиевых энергоэффективных профилей с двухкамерными стеклопакетами с применением низкоэмиссионных стекол (энергосберегающее стекло).

Цоколь здания – трехслойные самонесущие железобетонные панели типа «сэндвич» высотой 0,6 м от уровня земли, облицованные керамической плиткой. Двухэтажная часть имеет две лестничные клетки, обеспечивающие эвакуацию людей при пожаре. Одна из лестничных клеток поднимается на отметку кровли, в эксплуатируемую ее часть, где располагаются технические помещения котельной и насосной станции.

Здание состоит из следующих функциональных зон:

  • зона торгового зала;
  • зона открытой сезонной торговли;
  • зона загрузки и подготовки товара;
  • административно-бытовая и техническая зона.

Основная часть здания торгового центра запроектирована одноэтажной. В административно-бытовой зоне здание имеет второй этаж на отметке +4,35 м.

Стены здания монолитные, железобетонные с утеплением снаружи на глубину промерзания экструдированными пенополи-стирольными плитами.

Инженерные решения систем отопления, вентиляции, кондиционирования воздуха и холодоснабжения

В торговом зале и складской зоне была предусмотрена совмещенная система вентиляции и воздушного отопления посредством компактных приточно-вытяжных агрегатов HOVAL с рекуперацией теплоты вытяжного воздуха (рис. 2, 3). В этом режиме приточно-вытяжные агрегаты работают в отопительный сезон в рабочее время комплекса, в нерабочее время установки работают в рециркуляционном режиме (рис. 4).

Работа приточно-вытяжного агрегата в режиме нагрева с теплоутилизацией

Для обеспечения минимальных затрат на отопление локальной зоны над линией касс на уровне 3,5 м от пола были установлены гладкие водяные панели. Для оптимизации распределения температур и однородности качества воздушной среды по всему объему здания и для исключения застойных или сквозняковых зон воздушных масс в торговом зале и над линией касс предусмотрена круглогодичная работа потолочных лопастных реверсивных вентиляторов с изменяемым направлением движения воздуха. Включение вентиляторов происходит автоматически при разнице температур в верхней и нижней зонах более 5 °C. Таким образом удается добиться уменьшения времени работы приточных установок, экономии энергоресурсов и более комфортной среды для пребывания человека. Безусловно, такие решения рациональны и крайне эффективны при применении в крупных однообъемных зданиях общественного или промышленного назначения.

Графическое изображение воздушной струи, генерируемой в секции воздухораспределителя агрегатов Hoval в режиме нагрева

Графическое изображение воздушной струи, генерируемой в секции воздухораспределителя агрегатов Hoval в режиме охлаждения

Приточно-вытяжные агрегаты также используются в летний период в торговом зале в дневное время (с 8.00 до 22.00) в режиме вентиляции и охлаждения (рис. 5). Для этого в них установлены теплообменники-воздухоохладители, в которых приточный воздух охлаждается до +17 °C. В ночное время для выхолаживания торгового зала и экономии энергии на дневное охлаждение устраивается ночное проветривание: 50 % приточно-вытяжных агрегатов работают на приток (рис. 6), 50 % – на вытяжку (рис. 7). При этом запуск ночного проветривания предусмотрен при условии, что температура внутреннего воздуха не менее +23 °C, а наружного – не более +18 °C, в противном случае режим проветривания не осуществляется. Также летом при неработающей системе холодоснабжения для дополнительной вытяжной вентиляции используются фонари дымоудаления при температуре в зале более +22 °C. Открывание фонарей осуществляется как автоматически от датчика температуры, так и в ручном режиме. При этом приоритет автоматического управления фонарями отнесен к системе дымоудаления.

Работа приточно-вытяжного агрегата в режиме рециркуляции

В остальных помещениях в летний период в ночное время вентиляция выключена, в дневное – включена в обычном режиме. В санузлах офисной части включение вытяжных систем и освещения сблокировано с датчиками движения, установленными в этих помещениях, что также позволяет снизить тепло- и электропотребление. Холодоснабжение теплообменников-воздухоохладителей приточно-вытяжных агрегатов в теп-лый период года предусматривается с помощью центральной холодильной станции.

Работа приточно-вытяжного агрегата в режиме притока при ночном проветривании

Работа приточно-вытяжного агрегата в режиме вытяжки при ночном проветривании

В состав холодильной станции входят: холодильная машина номинальной производительностью 465,9 кВт, аккумулятор холода емкостью 2 676 кВт•ч, насосы, теплообменник, баки и арматура.

Применяемый аккумулятор холода использует скрытое тепло замораживания воды. Трубчатый змеевик погружается в бак с водой. По змеевику циркулирует раствор этиленгликоля, который, в зависимости от режима работы аккумулятора, намораживает либо растапливает лед на поверхности трубок змеевика. Схема системы холодоснабжения и подробное описание ее работы приведены в статье [6].

Основные показатели проекта приведены в таблице.

Основные показатели проекта
Наименование показателя Величина показателя
Общая площадь здания, м 2 11 100
Строительный объем здания, м 3 88 800
Расход теплоты, кВт,
в том числе
— на отопление
— на вентиляцию
— на ВТЗ
939,6

373
312*
254,6**

Расход холода, кВт 653
Установленная мощность электродвигателей, кВт,
в том числе
— на вентиляцию
— на воздушно-тепловые завесы
— на отопление (с электроподогревом)
— на противопожарные мероприятия
(механическая вентиляция дымоудаления)
— на холодоснабжение
334,767

Примечание. * – с учетом теплоутилизации вытяжного воздуха, ** – с коэффициентом одновременности работы завес 0,5.

Заключение

Предусмотренные проектом архитектурные, конструктивные и инженерные решения позволили не только обеспечить высокую энергетическую эффективность торгово-складского комплекса, но и в целом отнести проект здания к зеленому строительству, что подтверждено результатами проведения Всероссийского конкурса по экологическому девелопменту и энергоэффективности Green Awards и присуждением проекту победы в номинации «Торговая недвижимость».

Читайте также:  Радиаторы отопления какие лучше для квартиры производитель
Оцените статью