- Система радиаторного отопления
- Классификация по типу радиаторов
- Секционные
- Трубчатые
- Панельное оборудование
- Пластинчатые
- По типу разводки
- Однотрубная система
- Двухтрубная система отопления
- Способы монтажа отопительного оборудования
- Классификация по типу циркуляции теплоносителя
- Системы с естественной циркуляцией
- С принудительной циркуляцией
- Открытая и закрытая система отопления
- Система открытого типа
- Система закрытого типа
- Схемы подключения радиаторов отопления
- Принцип работы радиаторных систем отопления
- Схема подключения радиаторов Паук
- Схема подключения «Ленинградка»
- Однотрубная принудительная схема
- Двухтрубная схема подключения радиаторов
- Схема Тихельмана: все радиаторы в одинаковых условиях
- Лучевая схема подключения радиаторов отопления
- Что и где в итоге использовать?
- Способы соединения радиаторов
- Боковое подключение батарей отопления
- Нижнее подключение батарей отопления
- Диагональное подключение батарей
- Особенные модели радиаторов
Система радиаторного отопления
Система радиаторного отопления — самый распространенный вариант устройства обогрева зданий. Принцип работы состоит в поступлении нагретой жидкости (обычно воды) от котла по трубам в радиаторы, которые передают тепло в помещение. Такое отопление бывает разных видов в зависимости от определенных параметров.
Классификация по типу радиаторов
Радиаторы, используемые в системах отопления могут отличаться друг от друга конструкцией и материалом изготовления.
Секционные
Такие батареи состоят из одинаковых секций. Радиатор собирается в соответствии с необходимыми размерами и мощностью.
Могут быть изготовлены из чугуна, алюминия или алюминия и стали (биметаллические).
Трубчатые
Разработаны для централизованной системы отопления и представляют собой цельную металлическую конструкцию, имеющую нижний и верхний коллектор, которые располагаются горизонтально.
К ним присоединены вертикальные трубки.
Панельное оборудование
Производится из бетона или стали. Бетонные панели монтируются в стены, передача тепла происходит только излучением.
Пластинчатые
Представляет собой конструкцию, состоящую из сердечника и прикрепленных на него тонких металлических ребер. Пластины несут тепло конвективным способом.
Обособленно можно выделить угловые радиаторы. Они имеют особое расположение – монтируются в углу комнаты. Могут быть выполнены в любой конструкции.
По типу разводки
В зависимости от схемы соединения труб с нагревательным оборудованием системы отопления делятся на одно- и двухтрубные.
Однотрубная система
Принцип работы — жидкий теплоноситель поднимается по одному трубопроводу ко всем нагревательным элементам. В одноэтажном доме распространение тепла происходит в горизонтальном направлении.
Температура воздуха будет одинаковой во всех комнатах без исключения. В многоэтажных строениях по одному стояку горячая вода циркулирует от нижней точки к самой верхней в системе отопления. Верхние этажи обогреваются сильнее нижних. Контраст температур будет ощущаться даже в трехэтажных домах.
Преимуществом подобной системы является простота в проведении монтажных работ. При правильной регулировке давления в трубах все отопительные элементы обеспечиваются теплом достаточно эффективно.
Недостатков однотрубной системы отопления значительно больше. Все расчеты сети должны быть тщательно продуманы. Допущенные ошибки практически невозможно устранить без кардинальной перестройки всех отопительных объектов.
Каждый элемент в системе взаимосвязан. При поломке одного встанет работа всей магистрали.
Двухтрубная система отопления
Данная система имеет особую конструкцию. Здесь применяют схему параллельного подсоединения, что позволяет монтировать одинаковые радиаторные приборы. Через одну трубу подается горячий теплоноситель к радиатору, через другую выводится охлажденный. Между нагревательным объектом и батареями происходит постоянная циркуляция жидкости.
Основным достоинством двухтрубного подключения является возможность подавать теплоноситель одной температуры ко всем радиаторам, поэтому тепло будет одинаковым в любой точке многоэтажного дома.
Недостаток заключается в том, что на проведение отопительной магистрали затрачивается больше материалов. Необходимо устанавливать подающую и отводящую трубы.
Способы монтажа отопительного оборудования
Присоединение всех элементов отопительной конструкции может осуществляться по-разному. По способу монтажа к магистрали радиаторные системы отопления могут быть:
Вертикальная система имеет подключение снизу вверх. К одному стояку проводятся элементы отопления всех этажей в здании. Такой способ эффективен, но дорог.
Горизонтальная система применяется в зданиях, имеющих один этаж. Помещение обычно имеет большую площадь, поэтому конструкция отопления должна быть сложной. Подключение радиаторов происходит по горизонтальной траектории. Разводку стояков помещают в коридоре или подъезде.
Классификация по типу циркуляции теплоносителя
По способу создания циркуляции жидкости системы частного отопления подразделяются на два типа: гравитационные (с естественной циркуляцией) и насосные (с принудительным движением).
Перед монтажом следует учесть принципы работы каждого оборудования и выбрать наиболее подходящее под условия здания.
Системы с естественной циркуляцией
Естественное движение воды обусловлено только физическими процессами. Жидкость перемещается под давлением.
При правильной планировке такой системы отопление будет зависеть лишь от естественного напора воды. Сбои при соблюдении всех условий случаются крайне редко.
С принудительной циркуляцией
Если здание построено в местности с неустойчивым уровнем воды, специалисты рекомендуют провести оборудование с принудительной циркуляцией. Встраивается специальный насос, обеспечивающий постоянное движение теплоносителя.
Для его функционирования необходимо подключение к электроэнергии. При отключении электричества может возникнуть сбой во всей системе.
Открытая и закрытая система отопления
Все системы отопления также подразделяются на два типа, которые отличаются между собой не только важным элементом в структуре — расширительным баком, но и энергоэффективностью.
Система открытого типа
Основной принцип ее работы заключается в открытом расширительном баке. Вода нагревается в котле, устанавливаемом в самой низкой точке дома. За счет возникающего давления из-за разницы диаметров труб она поднимается вверх. Насос необязателен. В радиаторах теплоноситель остывает и снова попадает в нагревательный котел. Расширительный бак устанавливается в самой верхней точке. Он имеет открытую форму. Такой бак необходим, так как при нагревании вода увеличивается в объемах.
Радиаторы в открытом типе отопления должны быть изготовлены из металлов, отличающихся высокой прочностью. Следует выбирать между батареями из стали и чугуна.
Достоинством системы являются автономность работы. Она не зависит от электричества. Работа ее не будет сорвана из-за сбоев электроэнергии.
Такая конструкция имеет и серьезные недостатки. Она сложна в установке ввиду своей громоздкости. В баке вода быстро испаряется, поэтому возможно попадание воздуха в радиаторы. Вся внутренняя поверхность оборудования подвержена коррозии. Батареи медленно прогреваются, поэтому КПД открытой системы отопления низкое.
Система закрытого типа
Ее основное отличие – наличие закрытого бака, напоминающего по форме капсулу. Она разделена на две части мембранной перегородкой: в одной половине находится вода, а в другой — азот под давлением. Принцип работы: жидкость нагревается до нужной температуры, перемещается в расширительный бак и выравнивает давление. Обратно вода движется при помощи насоса.
Такая система способна отапливать большие площади, ей по силам обеспечить теплом здание любой этажности. Поэтому она получила широкое применение в частных и промышленных масштабах.
Закрытая система имеет ряд преимуществ:
- Благодаря баку жидкость не испаряется, следить за уровнем воды нет необходимости.
- Оборудование не подвержено коррозийным отложениям и окислению.
- За счет регулировки давление на выходе и входе одинаково, поэтому трубы не подвергаются гидроударам.
- Большой срок эксплуатации.
- Высокая эффективность благодаря быстрому нагреву и хорошей теплоотдаче.
Схемы подключения радиаторов отопления
В этой статье мы с Вами рассмотрим схемы подключения радиаторов отопления и Вы поймёте какую схему выбрать именно Вам. Сегодня стоит вопрос в выборе двух схем и двух систем по работе систем радиаторного отопления. Первая — это гравитационная система, которая работает без принудительной циркуляции с помощью циркуляционного насоса. И вторая система — это именно та система, которая работает принудительно с использованием циркуляционного насоса. Но так же эти системы могут между собой кооперироваться.
То есть у нас есть гравитационная схема радиаторного отопления, которая работает сама, именно по физическим законам тепла и холода, а есть принудительная система.
Принцип работы радиаторных систем отопления
Что может быть проще схем подключения радиаторов отопления? Есть котел: твердотопливный, дизельный, газовый и т. д.. В котле нагревается теплоноситель, который попадает туда под действием насоса. Нагретый теплоноситель идет в радиаторную систему отопления, в радиаторах тепло отдается окружающему воздуху. Теплоноситель остывает и уже охлажденный возвращается снова в котел, где снова нагревается и так круг замыкается. Все очень и очень просто, но, тем не менее, в реальности схемы бывают гораздо сложнее. Давайте посмотрим, какими бывают эти схемы и чем они отличаются друг от друга, разберем их достоинства и недостатки.
Схема подключения радиаторов Паук
Образно представим котел из которого мы берем трубопровод, и выводим его где то в центр дома. Обычно такая система называется паук. Опускаем стояки и собираем, направляем это все в обратку. Подсоединяем к трубам радиаторы. Теплоноситель поднимается вверх по своим естественным физическим законам. То есть горячий теплоноситель идет вверх, а на второй трубе посередине он уходит и падает вниз. Проходит через радиатор, охлаждается и попадает в обратку.
Обратите внимание, нижние трубы идут под уклоном. Это единственная проблема, то что нужно делать уклоны. Но именно в сегодняшнее время многие опять переходят на эти старые системы, так как начинаются проблемы с энергоносителями. Например, часто отключают электричество, при этом насос работать не будет. Система просто встанет. А вот такая система работает у вас постоянно. Котел может быть любой: газовый, угольный, дизельный и даже электрический. Вся эта система будет работать.
Эта система очень громоздкая. Её необходимо практически выводить на крышу и на чердак. Поэтому не каждому дано ее осилить.
Схема подключения «Ленинградка»
Рассмотрим вторую систему. Когда мы берем подачу с котла и затем опускаем ее вниз. Проводим на уровне радиаторов и потом возвращаем ее обратно в котел. Здесь тоже необходимо соблюдать уклон. Образно это называется система радиаторного отопления, так как по длине монтируется 2-3 радиатора. То есть первый попадает в горячий теплоноситель, какая то часть уходит по обратке охлажденная, а горячая идет в следующий радиатор. Такую схему подключения радиаторов отопления так же называют “классическая ленинградка”. Единственное необходимо поднять трубы немного вверх, чтобы создать разгон. Потом вода пойдет по уклону, здесь они тоже очень важны. Это не всегда удобно сделать, потому что вам будут мешать двери. Так же, чем меньше отводов, тем лучше данная система работает. Если не соблюсти это правило, вы можете посадить всю систему.
Ленинградка может работать с насосом. Он врезается в обратку. За счет него увеличивается скорость и система эффективней работает. Единственный недостаток этой системы — это большой диаметр труб. Если в принудительной схеме подключения радиаторов отопления мы возьмем трубы диаметра 32, мы поставим насос и он все везде продавит. Здесь же, чтобы система работала, трубы должны быть большие. Поэтому сейчас это очень хорошие системы. В новостройках мы всегда рекомендуем делать именно такие схема подключения радиаторов отопления, если есть проблемы с подачей электричества. А здесь можно топить печку или даже газовые котлы. Сейчас есть энергонезависимые системы с регулировкой температуры.
Однотрубная принудительная схема
Самая простая схема подключения радиаторов отопления из тех, которые применяются на практике — это однотрубная система. Она хороша тем, что она проста и меньше труб уходит на трассы. Именно из-за этого она часто применялась еще в советские времена, именно для экономии материала.
Однако это достоинство «однотрубки» выглядит сомнительным на фоне ее минусов. Главный из них – параллельные потоки. Теплоноситель заходит в радиатор, в нем отдает тепло окружающему воздуху, дальше снова возвращается в свой же поток. Но, так как теплоноситель в радиаторе немножко охладился, температура потока несколько снижается. То есть, во второй радиатор теплоноситель приходит холоднее, чем тот, который приходил в первый. Второй радиатор снова отдает тепло, теплоноситель снова охладился и снова подмешался в тому теплоносителю, который идет от котла и от первого радиатора. К третьему радиатору он приходит еще холоднее, чем ко второму. Если система достаточно длинная, то на последнем радиаторе изменения температуры будут достаточно ощутимо чувствоваться.
Как можно исправить ситуацию, когда разные радиаторы по-разному греют? Единственный выход – увеличить размер последних радиаторов. А проще всего не пользоваться однотрубной схемой, а выбрать какую-нибудь другую. Какую? Это мы рассмотрим дальше.
Двухтрубная схема подключения радиаторов
Она очень простая: все приборы в этой схеме подключения радиаторов отопления подключены параллельно друг другу. Как и все, что движется, жидкость, конечно, выбирает тот путь, который дается ей легче всего. При двухтрубной схеме теплоносителю легче протечь через первый радиатор. Дальше, на втором радиаторе, напор будет слабее, поэтому через него проток будет меньше. На третьем радиаторе будет еще меньший напор, а так далее по всей сети. Если радиаторов много, то велика вероятность, что при такой схеме через последний радиатор вообще ничего не будет протекать.
Получается, что первый радиатор греет лучше всего, второй греет хуже, третий – еще хуже, четвертый греет совсем плохо, а последний не греет совсем. Проблема похожа на ту, что мы наблюдали в однотрубной схеме, решить ее частично можно за счет увеличения площади последнего радиатора.
Обе системы плохи тем, что они очень плохо балансируются. Мы можем долго биться с тем, что один радиатор у нас греет, а другой не греет. Если мы закрываем один, начинает греть первый. Закрываем первый, начинает греть второй, а первый греть прекращает. Вот такая ерунда бывает в двухтрубных схемах подключения радиаторов отопления. Бывает, что стоят рядом два радиатора, через один проток есть, а через другой протока нет. Вот и все. Как ни бейся, как ни регулируй, греет либо один, либо другой, но никогда вместе. Поэтому, если вы применяете такую систему, то применяйте ее в очень небольших помещениях.
Схема Тихельмана: все радиаторы в одинаковых условиях
Как ясно из названия, данная схема подключения радиаторов отопления довольно простая, но в то же время хитрая. Первый радиатор расположен ближе всего к насосу, но дальше всех от обратной трубы, а последний находится дальше всех от насоса, но ближе всего к «обратке». Получается, что сопротивление на каждом радиаторе, или напор на каждом радиаторе одинаковые. Протоки через все радиаторы одинаковые. Если мы возьмем и перекроем любой из этих радиаторов, то остальные будут работать как работали, система сама себя балансирует. Здесь вроде бы получается побольше труб, но на самом деле, если эти радиаторы расположены по кругу здания, то схема, получается гораздо легче, проще, элегантнее, чем предыдущие. Петлей Тихельмана можно обвязать и два, и даже три этажа. Более того, если на одном этаже закрыть все радиаторы, на другом они продолжат нормально греть.
Лучевая схема подключения радиаторов отопления
Рассмотрим такую схему, в которой применяется коллектор. К коллектору подходит теплоноситель от котла, и уже от коллектора к каждому из радиаторов идет своя пара труб: прямая и обратная. Если эти трубы спрятать в полу, например, в утеплителе стяжки теплого пола, или вообще поместить их между «черным» полом и чистовым полом, то помещение без труб будет выглядеть очень эстетично. Трубы на другой этаж можно провести по потолку. При такой схеме каждый из радиаторов также можно отключить, но остальные продолжат работать.
Что и где в итоге использовать?
Подведем итоги. Если вы живете в центральных городах и у вас нет проблем с энергоносителями, газом, электричеством и прочими, мы рекомендуем использовать двухтрубную систему, со встречным движением, с движением круговым и принудительной циркуляцией. Так как тогда мы экономим на диаметре труб и на объеме теплоносителя. Соответственно чем меньше нужно воды, тем меньше необходимо энергозатрат, чтобы ее нагреть.
Если же у вас возникают проблемы с энергоносителями или же часто возникают аварийные ситуации, то вам стоит рассматривать схемы подключения радиаторов отопления гравитационного типа с естественной циркуляцией. На всякий случай Вы так же можете врезать туда насос, только он врезается вокруг трубы, чтобы не мешал основному проходу. На время когда у вас будет электричество вы будете гонять его с насосом, потому что скорость увеличивается, радиаторы все равномерной температуры. Эффективность работы с насосом увеличивается на 30- 50 %. Когда нет электричества, эта система будет продолжать у Вас работать. Вы уже знаете какие радиаторы Вы выбрали, их количество и размер. Соответственно Вы теперь можете посчитать, что нужно для того, чтобы их подключить. Напомню, в первом случае, нужны крупные, большие диаметры, можно использовать большие клапаны. И конечно в этом случае тяжело регулировать температуру. Конечно есть варианты, мы обязательно их рассмотрим в более детальном обзоре.
Способы соединения радиаторов
Классический многосекционный радиатор состоит из нескольких секций, передающих тепло от теплоносителя в окружающий воздух. При сборе радиатора, благодаря резьбовому соединению верхний и нижний коллектор каждой секции герметично соединяются друг с другом, наращивая общую длину. Образуется замкнутая система, использующая теплоноситель в качестве источника энергии.
Существует 3 схемы подключения батареи отопления к системе:
Разберем детально каждый вариант.
Боковое подключение батарей отопления
В случае бокового подключения радиаторов входной и выпускной трубы происходит с одной стороны. Чаще всего, через точку входа в верхней части батареи поступает горячий теплоноситель, а через нижнюю точку подключения выходит отработавший. Но бывают исключения, когда подключение производится наоборот. Предполагается, теплоноситель равномерно протекает во всю длину радиатора, затем опускается вниз и выходит. Но на самом деле это не так, через ближайшие к выходу секции теплоноситель проходит намного быстрее, чем через дальние.
Это связано с длиной пути, если для ближней секции он составляет 8-10 см ширины секции, вертикальный трубопровод и 8-10 см до выхода, то для дальней секции этот путь длиннее в разы. За то время, пока теплоноситель дойдет до дальней секции, а затем вернется обратно, через ближнюю секцию может пройти в два-три раза больший объем. Из-за этого процесс нагревания батареи происходит неравномерно, дальние секции могут быть чуть теплыми, в то время как ближние ко входу и выходу будут горячими.
Так же есть схема бокового подключения радиаторов отопления, только снизу. При такой схеме горячий теплоноситель приходит снизу и по идее равномерно поднимается вверх. Но на деле имеем тоже самое, что и с верхним подключением: первые секции прогреваются отлично. Остальные все меньше и меньше.
Нижнее подключение батарей отопления
Довольно часто встречается такая схема подключения радиаторов отопления, когда входящий поток теплоносителя подключается к нижнему коллектору, при этом выходной поток подключается к нижнему коллектору с другого края радиаторной батареи.
Горячая вода имеет меньшую плотность и за счет этого должна подниматься вверх, а уже остывший теплоноситель опускаться вниз. Благодаря этой циркуляции происходит замена теплоносителя более горячим. Но по подсчетам производителей, при таком виде соединения батарей от 10 до 20 процентов теплоносителя просто протекает мимо вертикальных трубопроводов и не участвуют в теплообмене. Это происходит из-за того, что узкий канал плохо способствует эффективной циркуляции и процесс вытеснения остывшего теплоносителя может происходить очень медленно. Естественно, что при отложении на вертикальных трубопроводов радиатора солей и накипи скорость циркуляции будет ухудшаться и эффективность падать еще больше.
Диагональное подключение батарей
Наиболее эффективная схема подключения батареи отопления к теплосети. В этом случае входящий поток подключается к верхнему коллектору, а выходной к нижнему коллектору с противоположной стороны. Движение потока теплоносителя происходит по диагонали и все секции задействованы в эффективном теплообмене. Так достигается максимальная эффективность использования теплоносителя и уменьшаются потери.
Особенные модели радиаторов
В многоквартирных домах разводка отопления зачастую сделана таким образом, что возможно только боковое или нижнее подключение батарей отопления. Вносить изменения в проект можно только по согласованию с комиссией, а это долгое и утомительное дело. Но многие изготовители радиаторных батарей предусматривают такую проблему и выпускают системы с диагональной разводкой коллекторов:
- Для бокового соединения радиаторов используется удлинитель съема потока. Это кронштейн с установленной трубкой, который вкручивается в нижний или верхний вход. За счет кронштейна забор или выпуск теплоносителя происходит в дальнем углу радиатора и поток проходит всю батарею по диагонали.
- Для нижнего подключения радиаторов чаще всего используется изоляция крайней секции. Для этого на заводе в месте соединения нижнего коллектора последней и предпоследней секций устанавливается заглушка. Она перекрывает прямой то теплоносителя, превращая всю оставшуюся батарею в радиатор с диагональным подключением.
Произвести такие модернизации можно и с уже установленными батареями. Кронштейны с удлинителями потока легко можно найти в магазинах сантехники. Для установки будет необходим опытный сантехник, так как потребуется отключать радиаторы от сети, разбирать подходной или отводящий трубопровод и герметизировать сборку.
Для перекрытия крайней секции существуют аналогичные решения. Чаще всего это муфта, закручивающаяся в точке выхода и имеющая дистанционную заглушку. Она перекрывает отверстие между предпоследней и последней секцией радиатора и перенаправляет основной поток теплоносителя по обходному пути.
И напоследок, несколько полезных советов:
- не делайте слишком длинные ветки, особенно на другие этажи. Теплоноситель обязательно должен доходить до радиатора;
- при размещении коллектора в комнате, не ставьте его в торце. Длина веток к радиаторам должна быть примерно одинаковой. В противном случае, температура теплоносителя в разных радиаторах может заметно отличаться;
- при монтаже труб в пол или в потолок, ведите их к радиаторам целиком, без разрыва соединений. Иначе, если однажды такая труба потечет, это будет очень большой проблемой.
Как видите, в схемах подключения радиаторов отопления типовых отопительных систем нет ничего сложного. Разобраться в них для того, чтобы спроектировать и проложить свою систему, может любой человек, имеющий общее среднее образование. Разумеется, при создании отопительных систем необходимо учитывать множество нюансов, но это – тема для отдельного разговора.