IX. СИСТЕМЫ ТЕХНИЧЕСКОГО ВОДОСНАБЖЕНИЯ
36. Каковы назначение и структура системы технического водоснабжения? Для каких целей используется техническая вода на ТЭС и АЭС?
Системой технического водоснабжения (СТВ) электростанции называют совокупность отдельных систем охлаждения, объединенных в одну СТВ. Технической водой называют химически неочищенную (сырую) воду, используемую для охлаждения. Другие ее названия – циркуляционная или охлаждающая вода.
На рис. 27 приведена принципиальная схема технического водоснабжения пылеугольной ТЭС.
Рис. 27. Принципиальная схема технического водоснабжения пылеугольной ТЭС (ЗШО – золошлакоотвал, СО – различные системы охлаждения, Н — насосы)
В состав СТВ входят:
— источник водоснабжения (река, озеро, водохранилище, море, артезианские скважины);
— водоводы (подводящие и отводящие трубопроводы или каналы);
— охладители воды (градирни, брызгальные бассейны, пруды-охладители), если они необходимы для данного типа СТВ.
При строительстве ТЭС и АЭС капиталовложения в СТВ могут достигать 5-10% от всей сметной стоимости электростанции.
Техническая вода может использоваться в следующих целях:
— охлаждение конденсаторов турбин; эта составляющая расхода технической воды является наиболее значительной, например, на ГРЭС в конденсаторы турбин поступает до 90-95%, а на АЭС – примерно 90% от всего расхода воды СТВ;
— на газоохладители электрогенераторов;
— на маслоохладители турбин;
— на химводоподготовку для восполнения потерь пара и конденсата;
— на гидрозолошлакоудаление (на пылеугольных ТЭС);
— на охлаждение устройств газоочистки;
— на системы охлаждения вспомогательных устройств и механизмов.
На АЭС важными потребителями воды являются также бассейны выдержки и перегрузки отработавшего топлива.
37. Какие существуют типы систем технического водоснабжения, каковы их достоинства и недостатки? Сравните охладители различных оборотных СТВ по глубине вакуума в конденсаторе турбины и расходу электроэнергии на привод циркуляционных насосов. Как выбираются циркуляционные насосы?
Бывают два основных типа СТВ:
— прямоточная; в такой СТВ охлаждающая вода проходит через агрегаты станции однократно;
— оборотная; здесь вода используется многократно.
Общее правило, как отличить эти два типа СТВ, состоит в следующем: СТВ может считаться прямоточной, если дебит (поступление свежей воды в единицу времени) используемого водоисточника не менее чем в 2-3 раза превышает потребности электростанции в охлаждающей воде.
В свою очередь, оборотные СТВ различаются по охладителю воды:
— с прудами-охладителями (естественными или искусственными);
— с брызгальными бассейнами.
Среднегодовая температура охлаждающей воды в средней полосе европейской части России существенно зависит от типа СТВ:
— 8-12 о С для прямоточных систем;
— 10-14 о С для оборотных систем с прудом-охладителем;
— 18-22 о С для оборотных систем с градирнями или брызгальными бассейнами.
Это говорит о том, что прямоточные СТВ обеспечивают более глубокий вакуум в конденсаторе турбины по сравнению со всеми типами оборотных систем.
Кроме того, прямоточная система в 2-4 раза дешевле оборотной по капитальным затратам.
Главным достоинством оборотных СТВ с градирнями является то, что они занимают мало места и умещаются на площадке электростанции. Градирни рассеивают теплоту в атмосферном воздухе, а не в водоемах, что с экологической точки зрения также является их преимуществом. В маловодных регионах могут применяться сухие градирни (градирни Геллера) с теплообменной поверхностью из алюминия.
Градирни являются предпочтительным вариантом для городских ТЭЦ, где важна экономия площади застройки, да и расход пара в конденсаторы теплофикационных турбин меньше, чем на КЭС.
Искусственные пруды-охладители могут сооружаться с наименьшей высотой подъема воды циркуляционными насосами (ЦН) – примерно 2-8 м, в то время как для прямоточных систем – 8-12 м, а при использовании градирен – 18-20 м. Чем меньше высота подъема, тем ниже расход электроэнергии на привод ЦН.
Если охлаждающая вода забирается из реки, пруда или моря, то насосная станция располагается на берегу и имеет несколько циркуляционных насосов (обычно не менее четырех), суммарная производительность которых равна расчетной. Резерв может предусматриваться только для морской воды ввиду частого ремонта насосов.
Для СТВ с градирнями или брызгальными бассейнами на каждый блок или турбину берутся два ЦН, которые размещаются непосредственно в турбинном отделении или пристрое к нему. Каждый из этих насосов рассчитан на 60% от суммарного расчетного расхода воды.
Каковы назначение и структура системы технического водоснабжения? Для каких целей используется техническая вода на ТЭС и АЭС?
Системой технического водоснабжения (СТВ) электростанции называют совокупность отдельных систем охлаждения, объединенных в одну СТВ. Технической водой называют химически неочищенную (сырую) воду, используемую для охлаждения. Другие ее названия – циркуляционная или охлаждающая вода.
На рис. 27 приведена принципиальная схема технического водоснабжения пылеугольной ТЭС.
Рис. 27. Принципиальная схема технического водоснабжения пылеугольной ТЭС (ЗШО – золошлакоотвал, СО – различные системы охлаждения, Н — насосы)
В состав СТВ входят:
— источник водоснабжения (река, озеро, водохранилище, море, артезианские скважины);
— водоводы (подводящие и отводящие трубопроводы или каналы);
— охладители воды (градирни, брызгальные бассейны, пруды-охладители), если они необходимы для данного типа СТВ.
При строительстве ТЭС и АЭС капиталовложения в СТВ могут достигать 5-10% от всей сметной стоимости электростанции.
Техническая вода может использоваться в следующих целях:
— охлаждение конденсаторов турбин; эта составляющая расхода технической воды является наиболее значительной, например, на ГРЭС в конденсаторы турбин поступает до 90-95%, а на АЭС – примерно 90% от всего расхода воды СТВ;
— на газоохладители электрогенераторов;
— на маслоохладители турбин;
— на химводоподготовку для восполнения потерь пара и конденсата;
— на гидрозолошлакоудаление (на пылеугольных ТЭС);
— на охлаждение устройств газоочистки;
— на системы охлаждения вспомогательных устройств и механизмов.
На АЭС важными потребителями воды являются также бассейны выдержки и перегрузки отработавшего топлива.
Какие существуют типы систем технического водоснабжения, каковы их достоинства и недостатки? Сравните охладители различных оборотных СТВ по глубине вакуума в конденсаторе турбины и расходу электроэнергии на привод циркуляционных насосов. Как выбираются циркуляционные насосы?
Бывают два основных типа СТВ:
— прямоточная; в такой СТВ охлаждающая вода проходит через агрегаты станции однократно;
— оборотная; здесь вода используется многократно.
Общее правило, как отличить эти два типа СТВ, состоит в следующем: СТВ может считаться прямоточной, если дебит (поступление свежей воды в единицу времени) используемого водоисточника не менее чем в 2-3 раза превышает потребности электростанции в охлаждающей воде.
В свою очередь, оборотные СТВ различаются по охладителю воды:
— с прудами-охладителями (естественными или искусственными);
— с брызгальными бассейнами.
Среднегодовая температура охлаждающей воды в средней полосе европейской части России существенно зависит от типа СТВ:
— 8-12 о С для прямоточных систем;
— 10-14 о С для оборотных систем с прудом-охладителем;
— 18-22 о С для оборотных систем с градирнями или брызгальными бассейнами.
Это говорит о том, что прямоточные СТВ обеспечивают более глубокий вакуум в конденсаторе турбины по сравнению со всеми типами оборотных систем.
Кроме того, прямоточная система в 2-4 раза дешевле оборотной по капитальным затратам.
Главным достоинством оборотных СТВ с градирнями является то, что они занимают мало места и умещаются на площадке электростанции. Градирни рассеивают теплоту в атмосферном воздухе, а не в водоемах, что с экологической точки зрения также является их преимуществом. В маловодных регионах могут применяться сухие градирни (градирни Геллера) с теплообменной поверхностью из алюминия.
Градирни являются предпочтительным вариантом для городских ТЭЦ, где важна экономия площади застройки, да и расход пара в конденсаторы теплофикационных турбин меньше, чем на КЭС.
Искусственные пруды-охладители могут сооружаться с наименьшей высотой подъема воды циркуляционными насосами (ЦН) – примерно 2-8 м, в то время как для прямоточных систем – 8-12 м, а при использовании градирен – 18-20 м. Чем меньше высота подъема, тем ниже расход электроэнергии на привод ЦН.
Если охлаждающая вода забирается из реки, пруда или моря, то насосная станция располагается на берегу и имеет несколько циркуляционных насосов (обычно не менее четырех), суммарная производительность которых равна расчетной. Резерв может предусматриваться только для морской воды ввиду частого ремонта насосов.
Для СТВ с градирнями или брызгальными бассейнами на каждый блок или турбину берутся два ЦН, которые размещаются непосредственно в турбинном отделении или пристрое к нему. Каждый из этих насосов рассчитан на 60% от суммарного расчетного расхода воды.
Системы охлаждения и технического водоснабжения на ТЭЦ
Дата публикации: 18.11.2016 2016-11-18
Статья просмотрена: 2351 раз
Библиографическое описание:
Власова, Е. Р. Системы охлаждения и технического водоснабжения на ТЭЦ / Е. Р. Власова, Н. В. Комарова, Е. О. Реховская. — Текст : непосредственный // Молодой ученый. — 2016. — № 24 (128). — С. 135-136. — URL: https://moluch.ru/archive/128/35495/ (дата обращения: 20.04.2021).
Обеспечение водой промышленных предприятий является одной из важных народнохозяйственных задач. В подавляющем большинстве отраслей промышленности вода используется в технологических процессах производства. Требования к количеству и качеству подаваемой воды определяются характером технологического процесса. Большая стоимость систем водоснабжения крупных промышленных предприятий вызывает необходимость весьма глубокого технико-экономического анализа возможных вариантов решения этой проблемы для выбора оптимального варианта.
Ключевые слова: системы водоснабжения, конденсатор, оросительное устройство, охлаждение воды
Водоснабжение тепловой электростанции может быть прямоточным или оборотным.
Прямоточные системыпредполагают однократное использование воды с последующей очисткой загрязненных сточных вод перед сбросом в городскую канализацию или поверхностные водоемы. Такая технология использования воды, является не только расточительной, но и потенциально опасной для больших контингентов населения. Прямоточное использование воды для технического водоснабжения можно допускать только при обосновании нецелесообразности систем оборотного водоснабжения или невозможности их оборудования [1].
Оборотные системы технического водоснабжения (СТВ) различаются поохладителю воды:
– с прудами-охладителями (естественными или искусственными);
– с брызгальными бассейнами.
Оборотная система водоснабжения характеризуется многократным использованием технической воды. Ее применяют в тех случаях, когда в районе сооружения электростанции нет источника с достаточным расходом воды или ее ресурсы исчерпаны другими потребителями.
Главным достоинством оборотных СТВ с градирнями является то, что они занимают мало места и умещаются на площадке электростанции. Градирни рассеивают теплоту в атмосферном воздухе, а не в водоемах, что с экологической точки зрения также является их преимуществом. Градирни являются предпочтительным вариантом для городских ТЭЦ, где важна экономия площади застройки, да и расход пара в конденсаторы теплофикационных турбин меньше, чем на КЭС.
По способу перемещения воздуха градирни разделяются на башенные, вентиляторные и открытые, а по способу образования поверхности охлаждения — на плёночные, капельные, брызгальные.
В башенных градирнях движение воздуха создаётся вытяжной башней, в вентиляторных — вентилятором, а в открытых — естественным движением воздуха (ветром) [2].
Для увеличения контакта воды с воздухом применяются оросительные устройства, которыми вода, подаваемая из конденсатора, разделяется на струи или капли и стекает вниз по щитам. Охлаждение воды происходит за счёт испарения и контакта с воздухом, поступающим в оросительные устройства через окна. Нагретый и насыщенный водяным паром воздух отводится из градирни.
В плёночных градирнях оросительное устройство выполняется в виде щитов, выполненных из досок, асбоцементных листов или пластмассовых элементов, выполненных в форме сот [3]. Устанавливаются они вертикально или с небольшим уклоном. Плёнки нагретой в конденсаторах турбин воды стекают по листам и при соприкосновении с воздухом охлаждаются. Воздух движется между листами.
В капельных градирнях оросительное устройство выполняется из горизонтальных брусков треугольного или прямоугольного сечения, размещаемых в несколько рядов по высоте [3]. Расположение брусков может быть коридорное, шахматное или каскадное. Капли воды падают с бруска на брусок и при соприкосновении с воздухом охлаждаются.
В брызгальных градирнях вода распыливается соплами и в струях фонтанов охлаждается движущимся над брызгальном устройством воздухом [3]. Охлажденная вода собирается в бассейне. Пленочные градирни имеют лучшие технические и экономические показатели благодаря большей поверхности охлаждения воды, стекающей в виде пленок по щитам и меньшему аэродинамическому сопротивлению.
1. МУ 2.1.5.1183–03 «Санитарно-эпидемиологический надзор за использованием воды в системах технического водоснабжения промышленных предприятий».
2. Пономаренко В. С., Арефьев Ю. И. Градирни промышленных и энергетических предприятий: Справочное пособие/ Под. общ. ред. В. С. Пономаренко. — М.: Энергоатомиздат: 1998. — 376 с.
3. Лаптев А. Г., Ведьгаева И. А. Устройство и расчет промышленных градирен: Монография. — Казань: КГЭУ, 2004. — 180 с