- Вихревой теплогенератор : устройство, принцип работы, критерии выбора
- Устройство и принцип работы
- Пассивные тангенциальные ВТГ
- Пассивные аксиальные теплогенераторы
- Активные теплогенераторы
- Назначение
- Преимущества и недостатки
- Критерии выбора
- ВТГ своими руками
- Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении
- Немного истории
- Принцип действия
- Принцип действия кавитационного преобразователя
- Устройство и особенности функционирования
- Сфера применения
- Интеграция в отопительную систему частного дома
- Преимущества применения кавитационных теплогенераторов
- Схемы изготовления теплогенератора кавитационного типа
- Подведем итоги
Вихревой теплогенератор : устройство, принцип работы, критерии выбора
Далеко не на всех промышленных объектах существует возможность отапливать помещения классическими теплогенераторами, работающими от сжигания газа, жидкого или твердого топлива, а использование нагревателя с ТЭНами является нецелесообразным или небезопасным. В таких ситуациях на помощь приходит вихревой теплогенератор, использующий для нагревания рабочей жидкости кавитационные процессы. Основные принципы работы этих устройств были открыты еще в 30-х годах прошлого века, активно разрабатывались с 50-х годов. Но внедрение в производственный процесс нагрева жидкости за счет вихревых эффектов произошло только в 90-х годах, когда вопрос экономии энергоресурсов стал наиболее остро.
Устройство и принцип работы
Изначально, за счет вихревых потоков научились получать нагрев воздуха и других газовых смесей. В тот момент греть так воду не представлялось возможным из-за отсутствия у нее свойств к сжатию. Первые попытки в этом направлении сделал Меркулов, который предложил заполнить трубу Ранка водой вместо воздуха. Выделение тепла оказалось побочным эффектом вихревого движения жидкости, и долгое время процесс не имел даже обоснования.
Сегодня известно, что при движении жидкости по специальной камере от избыточного давления молекулы воды выталкивают молекулы газа, которые скапливаются в пузырьки. Из-за процентного преимущества воды ее молекулы стремятся раздавить газовые включения, и в них возрастает поверхностное давление. При дальнейшем поступлении молекул газа температура внутри включений возрастает, достигая 800 – 1000ºС. А после достижения зоны с меньшим давлением происходит процесс кавитации (схлопывания) пузырьков, при котором накопленная тепловая энергия выделяется в окружающее пространство.
В зависимости от способа формирования кавитационных пузырьков внутри жидкости все вихревые теплогенераторы подразделяются на три категории:
- Пассивные тангенциальные системы;
- Пассивные аксиальные системы;
- Активные устройства.
Теперь рассмотрим каждую из категорий более детально.
Пассивные тангенциальные ВТГ
Это такие вихревые теплогенераторы, в которых термогенерирующая камера имеет статическое исполнение. Конструктивно такие вихревые генераторы представляют собой камеру с несколькими патрубками, по которым осуществляется подача и съем теплоносителя. Избыточное давление в них создается путем нагнетания жидкости компрессором, форма камеры и ее содержание представляет собой прямую или закрученную трубу. Пример такого устройства приведен на рисунке ниже.
Рис. 1. Принципиальная схема пассивного тангенциального генератора
При движении жидкости по входному патрубку происходит затормаживание на входе в камеру за счет тормозящего приспособления, из-за чего возникает разреженное пространство в зоне расширения объема. Затем происходит схлопывание пузырьков и нагревание воды. Для получения вихревой энергетики в пассивных вихревых теплогенераторах устанавливаются несколько входов / выходов из камеры, форсунки, переменная геометрическая форма и прочие приемы для создания переменного давления.
Пассивные аксиальные теплогенераторы
Как и предыдущий тип, пассивные аксиальные не имеют подвижных элементов для создания завихрений. Вихревые теплогенераторы такого типа осуществляют нагрев теплоносителя за счет установки в камере диафрагмы с цилиндрическими, спиральными или коническими отверстиями, сопла, фильера, дросселя, выступающих в роли сужающего устройства. В некоторых моделях устанавливаются по нескольку нагревательных элементов с различными характеристиками проходных отверстий для повышения эффективности их работы.
Рис. 2: принципиальная схема пассивного аксиального теплогенератора
Посмотрите на рисунок, здесь приведен принцип действия простейшего аксиального теплогенератора. Данная тепловая установка состоит из нагревательной камеры, входного патрубка, вводящего холодный поток жидкости, формирователя потока (присутствует далеко не во всех моделях), сужающего устройства, выходного патрубка с горячим потоком воды.
Активные теплогенераторы
Нагревание жидкости в таких вихревых теплогенераторах осуществляется за счет работы активного подвижного элемента, взаимодействующего с теплоносителем. Они оснащаются камерами кавитационного типа с дисковыми или барабанными активаторами. Это роторные теплогенераторы, одним из наиболее известных среди них является теплогенератор Потапова. Простейшая схема активного теплогенератора приведена на рисунке ниже.
Рис. 3. принципиальная схема активного теплогенератора
При вращении активатора в таком кавитационном теплогенераторе происходит образование пузырьков благодаря отверстиям на поверхности активатора и разнонаправленных с ними на противоположной стенке камеры. Такая конструкция считается наиболее эффективной, но и достаточно сложной в подборе геометрических параметров элементов. Поэтому преимущественное большинство вихревых теплогенераторов имеет перфорацию только на активаторе.
Назначение
На заре внедрения кавитационного генератора в работу он использовался только по прямому назначению – для передачи тепловой энергии. Сегодня, в связи с развитием и совершенствованием данного направления, вихревые теплогенераторы применяются для:
- Отопления помещений, как в бытовых, так и в производственных зонах;
- Нагревания жидкости для осуществления технологических операций;
- В качестве проточных водонагревателей, но с более высоким КПД, чем у классических бойлеров;
- Для пастеризации и гомогенезации пищевых и фармацевтических смесей с установленной температурой (при этом обеспечивается удаление вирусов и бактерий из жидкости без термической обработки);
- Получения холодного потока (в таких моделях горячая вода является побочным эффектом);
- Смешивание и разделение нефтепродуктов, добавление в получаемую смесь химических элементов;
- Парогенерации.
С дальнейшим совершенствованием вихревых теплогенераторов сфера их применения будет расширяться. Тем более что данный вид нагревательного оборудования имеет ряд предпосылок для вытеснения пока еще конкурентных технологий прошлого.
Преимущества и недостатки
В сравнении с идентичными технологиями, предназначенными для обогрева помещений или нагрева жидкостей вихревые теплогенераторы обладают рядом весомых преимуществ:
- Экологичность – в сравнении с газовыми, твердотопливными и дизельными теплогенераторами они не загрязняют окружающую среду;
- Пожаро- и взрывобезопасность – вихревые модели, в сравнении с газовыми теплогенераторами и устройствами на нефтепродуктах не представляют такой угрозы;
- Вариативность — вихревой теплогенератор может устанавливаться в уже существующие системы без необходимости установки новых трубопроводов;
- Экономность – в определенных ситуациях гораздо выгоднее классических теплогенераторов, так как обеспечивают ту же тепловую мощность в перерасчете на затрачиваемую электрическую мощность;
- Нет необходимости организации системы охлаждения;
- Не требуют организации отвода продуктов сгорания, не выделяют угарный газ и не загрязняют воздух рабочей зоны или жилого помещения;
- Обеспечивают достаточно высокий КПД – порядка 91 – 92% при сравнительно небольшой мощности электродвигателя или насоса;
- Не образуется накипь в процессе нагревания жидкости, что в значительной мере снижает вероятность повреждений из-за коррозии и засорения известковыми осадками;
Но, помимо преимуществ вихревые теплогенераторы имеют и ряд недостатков:
- Создает сильную шумовую нагрузку в месте установки, что сильно ограничивает их применение непосредственно в спальнях, залах, офисах и им подобных местах;
- Характеризуется большими габаритами, в сравнении с классическими нагревателями жидкости;
- Требует точной настройки процесса кавитации, так как пузырьки при столкновении со стенками трубопровода и рабочими элементами насоса приводят к их быстрому изнашиванию;
- Достаточно дорогостоящий ремонт при выходе со строя элементов вихревого теплогенератора.
Критерии выбора
При выборе вихревого теплогенератора важно определить актуальные параметры устройства, которые в наибольшей степени подойдут для решения поставленной задачи. К таким параметрам относятся:
- Потребляемая мощность – определяет количество расходуемой из сети электроэнергии, требуемой для работы установки.
- Коэффициент преобразования – определяет соотношение потребленной энергии в кВт и выделенной в качестве тепловой энергии в кВт.
- Скорость потока – определяет скорость движения жидкости и возможность ее регулирования (позволяет регулировать теплообмен в системах отопления или напор в нагревателе воды).
- Тип вихревой камеры – определяет способ получения тепловой энергии, эффективность процесса и требуемые для этого затраты.
- Габаритные размеры – важный фактор, влияющий на возможность установки теплогенератора в каком-либо месте.
- Количество контуров циркуляции – некоторые модели помимо контура теплоснабжения имеют контур отведения холодной воды.
Параметры некоторых вихревых теплогенераторов приведены в таблице ниже:
Таблица: характеристики некоторых моделей вихревых генераторов
Установленная мощность электродвигателя, кВт | 55 | 75 | 90 | 110 | 160 |
Напряжение в сети, В | 380 | 380 | 380 | 380 | 380 |
Обогреваемый объем до, куб.метры. | 5180 | 7063 | 8450 | 10200 | 15200 |
Максимальная температура теплоносителя, о С | 95 | 95 | 95 | 95 | 95 |
Масса нетто, кг. | 700 | 920 | 1295 | 1350 | 1715 |
Габаритные размеры: | 2000 700 775 | 2000 700 775 | 2000 700 775 | 2400 980 775 | 3200 1000 918 |
— длина мм — ширина мм. — высота мм. | |||||
Режим работы | автомат | автомат | автомат | автомат | автомат |
Также немаловажным фактором является цена вихревого теплогенератора, которая устанавливается заводом изготовителем и может зависеть как от его конструктивных особенностей, так и от параметров работы.
ВТГ своими руками
Для изготовления вихревого теплогенератора в домашних условиях вам понадобится: электрический двигатель, плоская герметичная камера с вращающимся в ней диском, насос, болгарка, сварка (для металлических труб), паяльник (для пластиковых труб) электрическая дрель, трубы и фурнитура к ним, станина или стенд для размещения оборудования. Сборка включает в себя следующие этапы:
- При помощи дрели просверлите несквозную перфорацию на диске;
Рис. 5: просверлите отверстия в диске
- Закройте диск кожухом, проследите за надежной герметизацией камеры;
- Соедините вал электродвигателя с валом вращающегося диска;
- Установите электродвигатель с камерой на станину и прочно закрепите;
- Подведите к теплогенерирующей камере трубы для подачи холодной и отвода горячей воды;
- Подключите к двигателю и насосу для прокачки жидкости по системе электропитание от внешнего источника.
Такой вихревой теплогенератор можно подключить как к уже существующей системе теплоснабжения, так и установить для него отдельные радиаторы отопления.
Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении
Вот такой, казалось бы, простой прибор позволит позабыть о привычном дорогостоящем отоплении
Заметили, что цена отопления и горячего водоснабжения выросла и не знаете, что с этим делать? Решение проблемы дорогих энергоресурсов — это вихревой теплогенератор. Я расскажу о том, как устроен вихревой теплогенератор и каков принцип его работы. Также вы узнаете, можно ли собрать такой прибор своими руками и как это сделать в условиях домашней мастерской.
Немного истории
Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.
Труба Ранка, проникая в которую газообразная среда делится на горячий и холодный воздух — это явление было открыто в начале двадцатого века, а применяется на практике сегодня
Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.
Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.
Показанный на схеме принцип работы вихревой трубы несложен — поток проходит через камеру закрутки, где разбивается на два потока с разной температурой
Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.
За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!
К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.
На фото показан демонстрационный вихревой генератор, в котором вода циркулирует в замкнутом контуре
Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.
Принцип действия
Так выглядит рабочий генератор Потапова — поток воды из патрубка очень горячий
Традиционно считалось, что кавитация — это паразитное явление, характеризующееся интенсивным образованием пузырьков, которые, во время схлопывания, провоцируют разрушение окружающих предметов.
Характерный пример последствий кавитации — разрушение корабельных винтов или разрушение крыльчатки лопастных насосов. Теплогенератор вихревого типа — это прибор, в котором паразитное явление приносит пользу.
На фото еще один теплогенератор Потапова, в ходе испытательных работ подключённый к отопительному радиатору
Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.
Несмотря на то, что кавитация — это паразитное явление, конструкционные элементы современных теплогенераторов, в отличии от тех же корабельных винтов, не страдают. Это объясняется тем, что кавитационные процессы протекают не вокруг дискового активатора, а за ним.
Принцип действия кавитационного преобразователя
Иллюстрация | Описание процесса |
|
Устройство и особенности функционирования
Так выглядит стационарная кавитационная установка, подключённая к промышленной системе отопления
Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».
«Улитка» — это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.
Дисковый активатор, одетый на вал — это приспособление отвечает за движение водной среды и за создание кавитационного эффекта
В полости «улитки» располагается дисковый активатор — диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:
- Электродвигатель крутит дисковый активатор. Дисковый активатор — это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
- Активатор раскручивает жидкую среду. Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
- Преобразование механической энергии в тепловую. Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.
Сфера применения
Иллюстрация | Описание сферы применения |
Отопление. Оборудование, преобразующее механическую энергию движения воды в тепло, с успехом применяется при обогреве различных зданий, начиная с небольших частных построек и заканчивая крупными промышленными объектами. |
Кстати, на территории России уже сегодня можно насчитать не менее десяти населённых пунктов, где централизованное отопление обеспечивается не традиционными котельными, а гравитационными генераторами.
Интеграция в отопительную систему частного дома
Для того, чтобы применить теплогенератор в отопительной системе, его в нее надо внедрить. Как это правильно сделать? На самом деле, в этом нет ничего сложного.
Схема внедрения вихревого теплогенератора в отопительную систему загородного дома или квартиры — кроме наличия насоса, особых отличий от монтажа обычного котла нет
Перед генератором (на рисунке отмечен цифрой 2) устанавливается центробежный насос (на рисунке — 1), которой будет поддавать воду с давлением до 6 атмосфер. После генератора устанавливается расширительный бак (на рисунке — 6) и запорная арматура.
Преимущества применения кавитационных теплогенераторов
Достоинства вихревого источника альтернативной энергии | |
Экономичность. Благодаря эффективному расходованию электричества и высокому КПД, теплогенератор экономичнее в сравнении с другими видами отопительного оборудования. | |
Малые габариты в сравнении с обычным отопительным оборудованием сходной мощности. Стационарный генератор, подходящий для отопления небольшого дома, вдвое компактнее современного газового котла. |
Если установить теплогенератор в обычную котельную вместо твёрдотопливного котла, останется много свободного места.
Единственно, на что нужно обратить внимание при монтаже прибора в отопительной системе, так это на высокий уровень шума. Поэтому монтаж генератора возможен только в нежилом помещении — в котельной, подвале и т.п
.
В устройстве небольшое количество механически подвижных элементов, а сложная электроника отсутствует в принципе. Поэтому вероятность поломки прибора, в сравнении с газовыми или даже твердотопливными котлами, минимальна.
За счет специфических процессов в рабочей камере генератора, засоры и накипь на стенках не появляются.
Инструкция эксплуатации устройства проста — достаточно включить двигатель в сеть и, при необходимости, выключить.
Схемы изготовления теплогенератора кавитационного типа
Для того чтобы сделать действующий прибор своими руками, рассмотрим чертежи и схемы действующих устройств, эффективность которых установлена и документально зарегистрирована в патентных бюро.
Иллюстрации | Общее описание конструкций кавитационных теплогенераторов |
Общий вид агрегата. На рисунке 1 показана наиболее распространенная схема устройства кавитационного теплогенератора. Цифрой 1 обозначена вихревая форсунка, на которой смонтирована камера закрутки. С боку камеры закрутки можно видеть входной патрубок (3), который присоединён к центробежному насосу (4). Цифрой 6 на схеме обозначены впускные патрубки для создания встречного возмущающего потока. Особо важный элемент на схеме — это резонатор (7) выполненный в виде полой камеры, объем которой изменяется посредством поршня (9). Цифрой 12 и 11 обозначены дроссели, которые обеспечивают контроль интенсивности подачи водных потоков. | |
Прибор с двумя последовательными резонаторами. На рис 2 показан теплогенератор, в котором резонаторы (15 и 16) установлены последовательно. Один из резонаторов (15) выполнен в виде полой камеры, окружающей сопло, обозначенное цифрой 5. Второй резонатор (16) также выполнен в виде полой камеры и расположен с обратного торца устройства в непосредственной близости от входных патрубков (10) подающих возмущающие потоки. Дроссели, помеченные цифрами 17 и 18, отвечают за интенсивность подачи жидкой среды и за режим работы всего устройства. | |
Теплогенератор с встречными резонаторами. На рис. 3 показана малораспространённая, но очень эффективная схема прибора, в котором два резонатора (19, 20) расположены друг напротив друга. В этой схеме вихревая форсунка (1) соплом (5) огибает выходное отверстие резонатора (21). Напротив, резонатора, отмеченного цифрой 19, вы можете видеть входное отверстие (22) резонатора под номером 20. Обратите внимание на то, что выходные отверстия двух резонаторов расположены соосно. |
Иллюстрации | Описание камеры закрутки (Улитки) в конструкции кавитационного теплогенератора |
«Улитка» кавитационного теплогенератора в поперечном разрезе. На этой схеме можно видеть следующие детали: 1 — корпус, который выполнен полым, и в котором располагаются все принципиально важные элементы; 2 — вал, на котором закреплен роторный диск; 3 — роторное кольцо; 5 — технологические отверстия проделанная в статоре; 6 — излучатели в виде стержней. Основные трудности при изготовлении перечисленных элементов могут возникнуть при производстве полого корпуса, так как лучше всего его сделать литым. Так как оборудования для литья металла в домашней мастерской нет, такую конструкцию, пусть и с ущербом для прочности, придётся делать сварной. | |
Схема совмещения роторного кольца (3) и статора (4). На схеме показано роторное кольцо и статор в момент совмещения при прокручивании роторного диска. То есть, при каждом совмещении этих элементов мы видим образование эффекта, аналогичного действию трубы Ранка.
. | |
Поворотное смещение роторного кольца и статора. На этой схеме показано то положение конструктивных элементов «улитки», при котором происходит гидравлический удар (схлопывание пузырьков), и жидкая среда нагревается. То есть, за счёт скорости вращения роторного диска, можно задать параметры интенсивности возникновения гидравлических ударов, провоцирующих выброс энергии. Проще говоря, чем быстрее будет раскручиваться диск, тем температура водной среды на выходе будет выше. |
Подведем итоги
Теперь вы знаете, что собой представляет популярный и востребованный источник альтернативной энергии. А значит, вам будет просто решить: подходит такое оборудование или нет. Также рекомендую к просмотру видео в этой статье.