- Вихревой теплогенератор : устройство, принцип работы, критерии выбора
- Устройство и принцип работы
- Пассивные тангенциальные ВТГ
- Пассивные аксиальные теплогенераторы
- Активные теплогенераторы
- Назначение
- Преимущества и недостатки
- Критерии выбора
- ВТГ своими руками
- Вихревой теплогенератор: принцип действия, преимущества, схемы и рекомендации для самостоятельной сборки
- Конструктивные особенности вихревых теплогенераторов
- Пассивные тангенциальные ВТГ
- Пассивные аксиальные теплогенераторы
- Активные теплогенераторы
- Область применения теплогенераторов
- Преимущества и недостатки вихревых генераторов
- Как собрать вихревой теплогенератор для частного дома своими руками
Вихревой теплогенератор : устройство, принцип работы, критерии выбора
Далеко не на всех промышленных объектах существует возможность отапливать помещения классическими теплогенераторами, работающими от сжигания газа, жидкого или твердого топлива, а использование нагревателя с ТЭНами является нецелесообразным или небезопасным. В таких ситуациях на помощь приходит вихревой теплогенератор, использующий для нагревания рабочей жидкости кавитационные процессы. Основные принципы работы этих устройств были открыты еще в 30-х годах прошлого века, активно разрабатывались с 50-х годов. Но внедрение в производственный процесс нагрева жидкости за счет вихревых эффектов произошло только в 90-х годах, когда вопрос экономии энергоресурсов стал наиболее остро.
Устройство и принцип работы
Изначально, за счет вихревых потоков научились получать нагрев воздуха и других газовых смесей. В тот момент греть так воду не представлялось возможным из-за отсутствия у нее свойств к сжатию. Первые попытки в этом направлении сделал Меркулов, который предложил заполнить трубу Ранка водой вместо воздуха. Выделение тепла оказалось побочным эффектом вихревого движения жидкости, и долгое время процесс не имел даже обоснования.
Сегодня известно, что при движении жидкости по специальной камере от избыточного давления молекулы воды выталкивают молекулы газа, которые скапливаются в пузырьки. Из-за процентного преимущества воды ее молекулы стремятся раздавить газовые включения, и в них возрастает поверхностное давление. При дальнейшем поступлении молекул газа температура внутри включений возрастает, достигая 800 – 1000ºС. А после достижения зоны с меньшим давлением происходит процесс кавитации (схлопывания) пузырьков, при котором накопленная тепловая энергия выделяется в окружающее пространство.
В зависимости от способа формирования кавитационных пузырьков внутри жидкости все вихревые теплогенераторы подразделяются на три категории:
- Пассивные тангенциальные системы;
- Пассивные аксиальные системы;
- Активные устройства.
Теперь рассмотрим каждую из категорий более детально.
Пассивные тангенциальные ВТГ
Это такие вихревые теплогенераторы, в которых термогенерирующая камера имеет статическое исполнение. Конструктивно такие вихревые генераторы представляют собой камеру с несколькими патрубками, по которым осуществляется подача и съем теплоносителя. Избыточное давление в них создается путем нагнетания жидкости компрессором, форма камеры и ее содержание представляет собой прямую или закрученную трубу. Пример такого устройства приведен на рисунке ниже.
Рис. 1. Принципиальная схема пассивного тангенциального генератора
При движении жидкости по входному патрубку происходит затормаживание на входе в камеру за счет тормозящего приспособления, из-за чего возникает разреженное пространство в зоне расширения объема. Затем происходит схлопывание пузырьков и нагревание воды. Для получения вихревой энергетики в пассивных вихревых теплогенераторах устанавливаются несколько входов / выходов из камеры, форсунки, переменная геометрическая форма и прочие приемы для создания переменного давления.
Пассивные аксиальные теплогенераторы
Как и предыдущий тип, пассивные аксиальные не имеют подвижных элементов для создания завихрений. Вихревые теплогенераторы такого типа осуществляют нагрев теплоносителя за счет установки в камере диафрагмы с цилиндрическими, спиральными или коническими отверстиями, сопла, фильера, дросселя, выступающих в роли сужающего устройства. В некоторых моделях устанавливаются по нескольку нагревательных элементов с различными характеристиками проходных отверстий для повышения эффективности их работы.
Рис. 2: принципиальная схема пассивного аксиального теплогенератора
Посмотрите на рисунок, здесь приведен принцип действия простейшего аксиального теплогенератора. Данная тепловая установка состоит из нагревательной камеры, входного патрубка, вводящего холодный поток жидкости, формирователя потока (присутствует далеко не во всех моделях), сужающего устройства, выходного патрубка с горячим потоком воды.
Активные теплогенераторы
Нагревание жидкости в таких вихревых теплогенераторах осуществляется за счет работы активного подвижного элемента, взаимодействующего с теплоносителем. Они оснащаются камерами кавитационного типа с дисковыми или барабанными активаторами. Это роторные теплогенераторы, одним из наиболее известных среди них является теплогенератор Потапова. Простейшая схема активного теплогенератора приведена на рисунке ниже.
Рис. 3. принципиальная схема активного теплогенератора
При вращении активатора в таком кавитационном теплогенераторе происходит образование пузырьков благодаря отверстиям на поверхности активатора и разнонаправленных с ними на противоположной стенке камеры. Такая конструкция считается наиболее эффективной, но и достаточно сложной в подборе геометрических параметров элементов. Поэтому преимущественное большинство вихревых теплогенераторов имеет перфорацию только на активаторе.
Назначение
На заре внедрения кавитационного генератора в работу он использовался только по прямому назначению – для передачи тепловой энергии. Сегодня, в связи с развитием и совершенствованием данного направления, вихревые теплогенераторы применяются для:
- Отопления помещений, как в бытовых, так и в производственных зонах;
- Нагревания жидкости для осуществления технологических операций;
- В качестве проточных водонагревателей, но с более высоким КПД, чем у классических бойлеров;
- Для пастеризации и гомогенезации пищевых и фармацевтических смесей с установленной температурой (при этом обеспечивается удаление вирусов и бактерий из жидкости без термической обработки);
- Получения холодного потока (в таких моделях горячая вода является побочным эффектом);
- Смешивание и разделение нефтепродуктов, добавление в получаемую смесь химических элементов;
- Парогенерации.
С дальнейшим совершенствованием вихревых теплогенераторов сфера их применения будет расширяться. Тем более что данный вид нагревательного оборудования имеет ряд предпосылок для вытеснения пока еще конкурентных технологий прошлого.
Преимущества и недостатки
В сравнении с идентичными технологиями, предназначенными для обогрева помещений или нагрева жидкостей вихревые теплогенераторы обладают рядом весомых преимуществ:
- Экологичность – в сравнении с газовыми, твердотопливными и дизельными теплогенераторами они не загрязняют окружающую среду;
- Пожаро- и взрывобезопасность – вихревые модели, в сравнении с газовыми теплогенераторами и устройствами на нефтепродуктах не представляют такой угрозы;
- Вариативность — вихревой теплогенератор может устанавливаться в уже существующие системы без необходимости установки новых трубопроводов;
- Экономность – в определенных ситуациях гораздо выгоднее классических теплогенераторов, так как обеспечивают ту же тепловую мощность в перерасчете на затрачиваемую электрическую мощность;
- Нет необходимости организации системы охлаждения;
- Не требуют организации отвода продуктов сгорания, не выделяют угарный газ и не загрязняют воздух рабочей зоны или жилого помещения;
- Обеспечивают достаточно высокий КПД – порядка 91 – 92% при сравнительно небольшой мощности электродвигателя или насоса;
- Не образуется накипь в процессе нагревания жидкости, что в значительной мере снижает вероятность повреждений из-за коррозии и засорения известковыми осадками;
Но, помимо преимуществ вихревые теплогенераторы имеют и ряд недостатков:
- Создает сильную шумовую нагрузку в месте установки, что сильно ограничивает их применение непосредственно в спальнях, залах, офисах и им подобных местах;
- Характеризуется большими габаритами, в сравнении с классическими нагревателями жидкости;
- Требует точной настройки процесса кавитации, так как пузырьки при столкновении со стенками трубопровода и рабочими элементами насоса приводят к их быстрому изнашиванию;
- Достаточно дорогостоящий ремонт при выходе со строя элементов вихревого теплогенератора.
Критерии выбора
При выборе вихревого теплогенератора важно определить актуальные параметры устройства, которые в наибольшей степени подойдут для решения поставленной задачи. К таким параметрам относятся:
- Потребляемая мощность – определяет количество расходуемой из сети электроэнергии, требуемой для работы установки.
- Коэффициент преобразования – определяет соотношение потребленной энергии в кВт и выделенной в качестве тепловой энергии в кВт.
- Скорость потока – определяет скорость движения жидкости и возможность ее регулирования (позволяет регулировать теплообмен в системах отопления или напор в нагревателе воды).
- Тип вихревой камеры – определяет способ получения тепловой энергии, эффективность процесса и требуемые для этого затраты.
- Габаритные размеры – важный фактор, влияющий на возможность установки теплогенератора в каком-либо месте.
- Количество контуров циркуляции – некоторые модели помимо контура теплоснабжения имеют контур отведения холодной воды.
Параметры некоторых вихревых теплогенераторов приведены в таблице ниже:
Таблица: характеристики некоторых моделей вихревых генераторов
Установленная мощность электродвигателя, кВт | 55 | 75 | 90 | 110 | 160 |
Напряжение в сети, В | 380 | 380 | 380 | 380 | 380 |
Обогреваемый объем до, куб.метры. | 5180 | 7063 | 8450 | 10200 | 15200 |
Максимальная температура теплоносителя, о С | 95 | 95 | 95 | 95 | 95 |
Масса нетто, кг. | 700 | 920 | 1295 | 1350 | 1715 |
Габаритные размеры: | 2000 700 775 | 2000 700 775 | 2000 700 775 | 2400 980 775 | 3200 1000 918 |
— длина мм — ширина мм. — высота мм. | |||||
Режим работы | автомат | автомат | автомат | автомат | автомат |
Также немаловажным фактором является цена вихревого теплогенератора, которая устанавливается заводом изготовителем и может зависеть как от его конструктивных особенностей, так и от параметров работы.
ВТГ своими руками
Для изготовления вихревого теплогенератора в домашних условиях вам понадобится: электрический двигатель, плоская герметичная камера с вращающимся в ней диском, насос, болгарка, сварка (для металлических труб), паяльник (для пластиковых труб) электрическая дрель, трубы и фурнитура к ним, станина или стенд для размещения оборудования. Сборка включает в себя следующие этапы:
- При помощи дрели просверлите несквозную перфорацию на диске;
Рис. 5: просверлите отверстия в диске
- Закройте диск кожухом, проследите за надежной герметизацией камеры;
- Соедините вал электродвигателя с валом вращающегося диска;
- Установите электродвигатель с камерой на станину и прочно закрепите;
- Подведите к теплогенерирующей камере трубы для подачи холодной и отвода горячей воды;
- Подключите к двигателю и насосу для прокачки жидкости по системе электропитание от внешнего источника.
Такой вихревой теплогенератор можно подключить как к уже существующей системе теплоснабжения, так и установить для него отдельные радиаторы отопления.
Вихревой теплогенератор: принцип действия, преимущества, схемы и рекомендации для самостоятельной сборки
Дата публикации: 7 января 2020
Отопление помещений значительной площади при отсутствии централизованной подачи тепловой энергии – серьезная головная боль для владельца. Традиционный нагреватель с тенами может быть опасным из-за открытых рабочих элементов, а его энергоемкость «съест» всю ожидаемую прибыль. А классические теплогенераторы на топливе могут не справиться с поддержанием требуемой температуры на десятках квадратных метров площади. Ситуация кажется безвыходной, но это не так. Оптимальное решение в данном случае – вихревой теплогенератор, в основу которого положен принцип кавитационных процессов.
Первые опыты устройства подобного типа проводились еще в 30-х годах прошлого столетия и активно готовились к внедрению в 50-х годах. Но беспечное человечество, полагающееся на безопасность топливных ресурсов, посчитало это изобретение ненужным, и работы были свернуты. Лишь в конце XX века, когда интенсивный рост промышленности вновь заставил задуматься об источниках энергии, о вихревых генераторах для дома вспомнили и стали доводить их до ума с целью повсеместного использования.
Конструктивные особенности вихревых теплогенераторов
Явление нагревания воздуха и других газовых смесей известно уже несколько столетий. А вот с увеличением температуры воды ничего не получалось из-за отсутствия у нее свойства сжатия. Технический прогресс помог решить эту недоработку. В ходе многочисленных опытов выяснилось, что циркуляция жидкости по камере специальной конструкции приводит к выталкиванию из ее состава молекул воздуха. При этом вода пытается раздавить образующиеся пузырьки, число которых быстро увеличивается за счет «присоединения» новых молекул. В этом явлении кроется принцип действия вихревых генераторов. Повышение давления с одновременным эффектом увеличения объема приводит к резкому росту температуры внутри пузырьков до отметки в 1000ºС. При дальнейшем поступлении их в зону уменьшенного давления возникает явление кавитации: пузырьки лопаются, а накопленная внутри тепловая энергия выделяется в окружающий воздух и нагревает его.
Способ формирования газовых пузырьков при интенсивной циркуляции жидкости имеет свои отличия в зависимости от конструктивных особенностей теплогенератора. Это позволяет вести удобную классификацию моделей.
Пассивные тангенциальные ВТГ
Устройства, камера которых имеет так называемое статическое исполнение. Она изготовлена в форме прямой или винтовой трубы и оснащена несколькими патрубками, через которые происходит съем выделенной тепловой энергии. Нагнетание жидкости и рост давления возможен благодаря работе компрессорного устройства.
Уверенное движение жидкости по емкости входного патрубка приостанавливается за счет встроенного тормозящего приспособления. В зоне внезапного расширения объема возникает эффект разреженного пространства. Образованные из воды пузырьки газа немедленно схлопываются, их них выделяется тепловая энергия и нагревает воду. Получить ценное тепло удается через несколько устройств входа-выхода, обустроенных внутри камеры. Чтобы перепад давления для явления кавитации был особенно ощутим, емкость имеет вариативную геометрическую форму, которая меняется по мере продвижения вглубь емкости.
Пассивные аксиальные теплогенераторы
В данном устройстве также ставка сделана на стационарную конструкцию камеры. Для создания завихрений и эффекта кавитации подвижные элементы здесь не используются. Нагрев теплоносителя осуществляется благодаря работе диафрагмы с цилиндрическими или спиральными отверстиями, а также наличию дросселя и сопла, создающих эффект сужения внутреннего пространства камеры. Хорошие результаты дает одновременное использование сразу нескольких типов проходных отверстий, дающих разный уровень перепадов давления. В результате прохождения воды по емкости камеры на выходной патрубок она поступает в нагретом состоянии.
Активные теплогенераторы
Альтернативный вариант устройства — вихревой генератор с подвижным элементом. Процесс кавитации осуществляется здесь внутри камер кавитационого типа с активаторами дисковой или барабанной конструкции. Вытеснение газа и образование пузырьков происходит здесь за счет вращения активатора и прохождения воды через перфорацию на его поверхности и многочисленные разнонаправленные отверстия на противоположной стенке камеры. Подобрать их количество и подходящую форму считается затруднительным даже на современном этапе развития металлообработки. Поэтому большинство моделей имеют перфорацию только на активаторе.
Область применения теплогенераторов
Долгое время вихревые генераторы для частного дома рассматривались только как устройства для альтернативного отопления. Благодаря усовершенствованию конструкции им найдено более разнообразное применение:
- Обогрев жилых и производственных помещений;
- Подготовка горячей воды для отдельных технологических операций;
- Использование в качестве проточных водонагревателей;
- Пастеризация и гомогенизация пищевых смесей и фармацевтических препаратов;
- Получение потока холодной воды под давлением;
- Парогенерация для поддержания микроклимата или иных производственных задач;
- Смешивание, разделение и обогащение нефтепродуктов.
Преимущества и недостатки вихревых генераторов
В числе неоспоримых достоинств стоит отметить:
- Экологическую безопасность;
- Защищенность от взрывов и возгораний;
- Возможность встраивания в уже имеющуюся систему оборудования;
- Экономичность, низкую стоимость полученной тепловой энергии;
- Работа без необходимости обустройства охлаждения;
- Возможность эксплуатации в условиях отсутствия устройств дымоудаления и отведения вредных веществ;
- Уровень КПД до 91-92%;
- Защиту от образования накипи, что снижает риск порчи оборудования вследствие коррозии и разрушения элементов.
Ограничения по использованию вихревых генераторов могут быть связаны со следующими особенностями:
- сравнительно высокий уровень производимого шума;
- крупные размеры;
- необходимость точной настройки кавитации;
- затратный ремонт при выходе из строя одного из элементов конструкции.
Как собрать вихревой теплогенератор для частного дома своими руками
Для конструирования вихревого генератора для частного дома своими руками потребуются камера со встроенным диском, электродвигатель, насос, дрель-болгарка, сварка, паяльник, комплект труб и запорной фурнитуры, надежная станина. Сборку следует осуществлять в строго определенной последовательности:
- на диск наносится неглубокая хаотичная перфорация;
- диск закрывается кожухом, после чего камера проверяется на герметичность;
- вал двигателя подключается к валу вращения диска;
- двигатель с камерой надежно фиксируется на станине;
- к теплогенерирующей трубе подключаются вход для холодной воды и выход для нагретого теплоносителя;
- к устройству подводится внешнее электропитание;
- генератор тестируется на предмет работоспособности и эксплуатации.
Конструктивные особенности устройства позволяют подключать его в уже действующую систему отопления или предусмотреть комплект отдельных радиаторов.
Машина едет на кукурузе — думаете возможно?
Биоэнергетика покоряет мир!
Виды биотоплива и его экологические характеристики
Тепловой насос на Алиэкспресс: технические характеристики и особенности популярных моделей
Вам нужно войти, чтобы оставить комментарий.