Время остывания системы отопления

Скорость остывания дома без отопления

Зима. Мороз. Аварийно отключено водяное отопление. Сколько времени есть на ремонт и восстановление работоспособности системы отопления без слива до размораживания? За какое время воздух в помещении остынет до критической температуры, при которой возникнет.

. опасность замерзания воды в трубах?

Критическим значением температуры внутреннего воздуха помещений принято считать +8°C. Предполагается, что при этом в подвалах, технических помещениях, на лестничных клетках температура может оказаться уже отрицательной, и последствия могут быть катастрофическими.

На скорость остывания дома влияют множество факторов: температура и влажность наружного воздуха, скорость и направление ветра, уровень и продолжительность инсоляции, наличие или отсутствие иных внутренних источников тепла (включая людей и животных), инфильтрация, вентиляция.

В расчете, представленном далее, будет учитываться только температура наружного воздуха. Этот факт не добавляет точности, делая расчет, по сути, оценочным, зато существенно его упрощает.

Следует заметить, что наука предлагает более высокоточные алгоритмы расчета скорости остывания дома (например: docplayer.ru/44638823-K-teorii-matematicheskogo-modelirovaniya-teplovogo-rezhima-zdaniy.html). Однако вся их точность нивелируется сложностью корректного определения фактических значений многочисленных исходных данных. А так как исходных параметров много, то неточности их значений в результате вычислений накапливаются в одной большой погрешности конечного результата.

Теория.

По классическому закону Ньютона-Рихмана время нагрева (охлаждения) тела в среде с постоянной температурой определяется по формуле:

z=(LN (ABS (tн-t1)) -LN (ABS (tн-t2)))·c·ρ·V/(α·F), с (1)

  • tн — температура среды, °C
  • t1 — начальная температура тела, °C
  • t2 — температура тела по истечении времени z, °C
  • c — удельная теплоемкость тела, Дж/(кг·К)
  • ρ — плотность тела, кг/м3
  • V — объем тела, м3
  • α — коэффициент теплоотдачи на границе поверхность тела — среда, Вт/(м2·К)
  • F — площадь поверхности тела, м2

Выделим правую часть формулы и обозначим β:

β=c·ρ·V/(α·F), с (2)

β имеет размерность времени — секунда:

В строительной теплотехнике величину β принято называть коэффициентом аккумуляции тепла здания и считать не в секундах, а в часах.

Наиболее надежным, достаточно точным и простым способом определения коэффициента аккумуляции здания β является практический замер температуры воздуха в помещении (как правило, в угловом) при отключенном отоплении и достаточно стабильной наружной температуре при пасмурной безветренной погоде без осадков.

Если температура воздуха в точке замера снизится с t1 до t2 за z часов, то согласно тем же формулам (1) и (2):

β=z/LN ((t1-tн)/(t2-tн)), час (3)

Для некоторых типов зданий значения β приведены в таблице:

* МДС 41-6.2000, Таблица 2, автор таблицы: к.т.н. Брайнина Е.Ю.

** Богословский В.Н., Сканави А.Н. Отопление, Москва, Стройиздат, 1991, стр. 81

Зная коэффициент аккумуляции β, можно достаточно легко смоделировать процесс остывания, вычислив время и среднюю скорость остывания дома:

z=β·LN ((t1-tн)/(t2-tн)), час (4)

Расчет в Excel скорости и времени остывания помещения.

На скриншотах далее представлен пример выполнения расчета, реализованного в Excel, с интерактивным отображением графика остывания помещения.

Задав исходные данные, вписав их в ячейки со светло-зеленой и светло-бирюзовой заливкой, пользователь получает автоматически вычисленные время z и скорость остывания v в ячейках листа Excel со светло-желтой заливкой фона.

Меняя шаг времени (в примере задан шаг 2 часа), можно визуально оценить темп остывания в разные по длине периоды времени.

В примере на скриншотах воздух в некоем помещении с коэффициентом аккумуляции β=20 часов остывает с t1=20°C до t2=8°C при температуре наружного воздуха tн=-10°C. Расчет в Excel показывает, что этот процесс по времени займет z=10,2 часа.

Средний темп падения температуры или скорость остывания в течение этого промежутка времени составит v=1,2°C/час. Самая большая скорость остывания будет в первый час после отключения отопления: vmax=1,4°C/час.

Беглого взгляда на график достаточно, чтобы понять, что отрицательной температура воздуха в помещении станет через 22 часа.

Программу можно использовать для расчета коэффициента аккумуляции β или температуры воздуха в помещении t2 по известному времени остывания z при помощи сервиса Excel «Подбор параметра».

Заключение.

Скорость остывания дома при отключении отопления зависит в первую очередь при отсутствии инфильтрации от коэффициента аккумуляции здания и от разницы между внутренней и внешней температурой воздуха.

Наибольшей способностью аккумулировать (запасать и сохранять) тепло обладают тяжелые массивные кирпичные старые здания с чугунными радиаторами и большим объемом воды в системе отопления. У таких домов коэффициент аккумуляции β достигает порой 120 часов.

С увеличением в здании количества и размеров окон, с уменьшением толщины стен в связи с широким использованием легких утеплителей, с распространением конвекторов, обуславливающих относительно небольшой объем теплоносителя в системе современные легкие дома плохо аккумулируют тепло. У таких зданий β может быть 40-20 часов и даже меньше.

Для одного и того же здания коэффициент аккумуляции угловых помещений верхних этажей меньше чем у срединных помещений средних этажей в 1,5-2 раза.

Прошу уважающих труд автора скачивать файл с программой расчетов после подписки на анонсы статей!

Быстро остывают трубы отопления в частном доме

Здравствуйте, уважаемый Читатель!

Читайте также:  Печи чугунные длительного горения с водяным отоплением

Хочу рассказать вам о том, с какими системами отопления мне приходилось сталкиваться.

Какие-то эксплуатировал, какие-то собирал сам, в том числе и системы отопления частных домов.

Об их плюсах и минусах узнал многое, хотя, наверное, не всё. В результате для своего дома сделал:

  • во-первых, собственную схему;
  • во-вторых, вполне надёжную;
  • в-третьих, допускающую модернизацию.

Я предлагаю не углубляться в подробное изучение различных схем отопления.

Давайте рассмотрим их с точки зрения применения именно в частном доме.

Частный дом ведь может быть и для постоянного проживания, и временного, как дача, например.

Так сказать, сузим нашу тему и приблизимся к практике.

Насчёт десяти лет, наверное, я ошибся. Обслуживать первую систему отопления я начал 33 года назад, когда был студентом Уральского Политехнического Института. Мне повезло устроиться на работу в котельную института дежурным слесарем. Правда, тогда я и не задумывался, какая она там, эта система? Работал и всё.

Работа была иногда нелёгкая, когда авария какая-нибудь. А если всё нормально – красота, сиди себе учи конспекты. Ночь отдежурил, утром на учёбу, «в школу», как мы тогда говорили. Через две ночи снова на дежурство. А главное, платили 110 – 120 рублей! В то время молодые специалисты получали столько же. Да плюс стипендия 40 рублей. Шикарная жизнь! Но, давайте поближе к теплу.

Из самого названия понятно, что отопление происходит нагретым воздухом. Воздух нагревается генератором тепла, а затем по каналам-воздуховодам поступает в помещения. По обратным каналам остывший воздух возвращается на подогрев. Довольно комфортная система.

Первым в истории теплогенератором была печь. Она нагревала воздух, который расходился по каналам в порядке естественной циркуляции. Такая система воздушного отопления использовалась в прошлых веках в продвинутых городских домах.

Сейчас используют самые разные теплогенераторы-котлы: газовые, твёрдотопливные, дизельные, электрические. Кроме естественной циркуляции используется и принудительная. Она, конечно, более эффективна:

  • Во-первых, гораздо быстрее прогревает помещения;
  • Во-вторых имеет более высокий КПД, так как гораздо эффективнее отводится тепло от теплогенератора;
  • В-третьих, её можно объединить с системой кондиционирования.

Вы, наверное, уже поняли, что здесь частным домом и «не пахнет». Да, верно, для частного дома эта схема отопления слишком громоздка и дорога. Одни расчёты чего стоят, а если допустить ошибку, то она будет, как говорят, фатальной.

Но давайте не будем расстраиваться. Если хочется все-таки обогреваться воздухом – выход есть. Это камин.

Причем, на мой взгляд, не обычный камин-пожиратель дров, а показанная на рисунке выше чугунная каминная топка. Это идеальный вариант домашнего уютного дровяного теплогенератора. Он и предназначен именно для нагрева воздуха, а не кирпича, как традиционный камин.

Воздух заходит в подкаминное пространство (где дрова лежат для антуража), обтекает его нагретый корпус. Затем обтекает раскалённую дымовую трубу по коробу камина и выходит через отверстия в верхней части короба. Кстати, к этим отверстиям можно подвести воздуховоды и распределять горячий воздух по помещениям.

Вполне достойный вариант, только если делать с воздуховодами, то при строительстве нужно не забыть их уложить в стены и перекрытия. Кое-кто ставит ещё и поддув, создавая принудительную вентиляцию. Но это, по-моему, уже перебор. У камина приятно слушать потрескивание дров, а не шум вентилятора.

Думаю, стоит упомянуть ещё тепловентиляторы и тепловые пушки. Это, так сказать, мобильные воздухоотопительные установки. Очень полезные приборы, особенно когда основная система отопления не работает или нужно быстро «догреть» воздух в помещении. Но в качестве основного варианта отопления их, по-моему, нельзя рассматривать.

Итак, каминная топка, как источник воздушного отопления – хорошее, а к тому же, приятное решение для частного дома.

В этом случае топлоноситель – вода или специальные жидкости, например, незамерзающие. Здесь источники тепла также самые разные в зависимости от топлива. Но если в воздушной системе теплый воздух приходит в помещение, то в водяной воздух помещения нагревается приборами, которые отдают ему накопленное водой тепло.

А накапливает вода тепла очень много. Есть такое понятие: «теплоёмкость», помните? Если своими словами,

Теплоемкость воды – это количество тепла, которое нужно передать воде, чтобы её температура поднялась на один градус.

Так вот этот показатель у воды очень неплохой. Посмотрите на таблицу справа.

Получается, шикарный теплоноситель мы получаем практически даром.

Да, водяная система несколько сложнее, но зато и более гибкая.

Представьте, нагретую воду по трубам можно подать куда угодно и там она отдаст накопленное тепло.

А трубы можно легко упрятать в стены, а можно и вообще не прятать, современные выглядят очень эстетично.

Как вода отдаёт тепло? Для этого создано несколько типов приборов:

  • Радиаторы – массивные, например чугунные, секции, собранные в батареи.

Внутри них протекает горячая вода. Тепловую энергию они отдают, в основном, за счёт инфракрасного излучения (радиации).

  • Конвекторы – похожи на радиаторы, но менее массивные и с развитой поверхностью за счёт множественных рёбер.
Читайте также:  Электрический котел для отопления чехия

Они, как правило, стальные или алюминиевые, реже медные. Окружающий воздух, нагреваясь от конвектора, начинает естественное движение вверх. То есть создаётся поток (конвекция) воздуха, отводящего тепло от конвектора.

Современные алюминиевые приборы тоже относятся к конвекторам, хотя называют их радиаторами. Нужно отметить, что сейчас практически все тепловые приборы водяного отопления называют радиаторами, хотя строго говоря, это неправильно. Но не будем умничать.

  • Калориферы – приборы для местного нагрева воздуха. Обычно они очень похожи на автомобильные радиаторы и используются схожим образом.

Через них прокачивается воздух, который нужно нагреть . Используются часто в системах приточной вентиляции для нагрева поступающего снаружи холодного воздуха.

  • «Тёплый пол» — популярная сейчас система нагрева пола за счет тонкостенных медных, пластиковых или металлопластиковых труб, уложенных змейкой или спиралью в пол помещения.
  • «Тёплые стены» — применялись в семидесятые годы в панельном домостроении. В бетонные панели вмуровывался змеевик из стальной трубы, в которую подавалась вода из системы отопления. Помню из детства тёплые стены панельных пятиэтажек.

Водяную систему с успехом можно применять в частном доме. Если это дача – можно залить вместо воды незамерзающий теплоноситель и не беспокоиться о размораживании системы.

Давайте немного подробнее разберём варианты систем отопления для малоэтажных домов.

Почему самотёчная? Потому что вода в ней на самом деле течёт сама. При нагревании в котле вода поднимается вверх, а затем, постепенно охлаждаясь в радиаторах, стекает вниз и снова возвращается в котел. Система простая, но обязательные условия необходимо соблюдать:

  • Труба должна быть довольно большого диаметра от 50 мм, а лучше 76 мм и больше.
  • Труба укладывается с уклоном для обеспечения самотёка воды.

Иногда эта самая труба и обогревает помещение без радиаторов и конвекторов за счёт своей большой массы и поверхности. Такие трубы называют регистрами, их можно встретить на вокзалах и автостанциях старых небольших городов. В частных домах сейчас редко её применяют – выглядит не очень эстетично. Представьте – в комнате толстенная труба, да ещё наклонная.

Очень большое достоинство этой системы – она не нуждается в циркуляционном насосе, вода циркулирует сама. Если котёл дровяной, угольный или газовый – никакие отключения электроэнергии не страшны, полная автономия и независимость. Говорю об этом, потому что сам имею неприятности с отключениями электроэнергии.

Особенность самотечной системы, которую считают недостатком – она открытая, то есть сообщается с воздухом и давления в ней нет. Значит, нужен открытый бак-расширитель и водичка постепенно испаряется, нужно за этим следить. Конечно, это не очень серьёзный недостаток. Меня больше отталкивают высоко расположенные наклонные трубы.

Для частного дома замкнутая система отопления, по-моему, оптимальный вариант. Лучше сказать закрытая. Закрытая, значит не имеющая контакта с воздухом. Здесь появляются новые элементы:

  • Мембранный бак-расширитель для компенсации расширения воды при нагревании;
  • Циркуляционный насос для прокачки воды по системе;
  • Группа безопасности – клапан подпитки (для добавления воды в систему при утечке), манометр, предохранительный клапан (для сброса пара при закипании воды).

Это более современный, эстетичный вариант. Здесь используются радиаторы, а чаще алюминиевые конвекторы, тонкие металлопластиковые или полипропиленовые трубы. Нет необходимости доливать воду, думать о наклоне труб, их можно вообще спрятать в стены или перекрытия.

Можно поставить красивые алюминиевые или биметаллические радиаторы, полотенцесушитель. Я использую два котла в одной системе – электрический котёл и водяной контур каминной топки. Как будто неплохо получилось.

Минус системы – без электроэнергии для циркуляционного насоса работать она не сможет. Более того, если топка «под парами», а электричество кончилось – может получиться «бумсик» с выбросом пара и большим шумом. По себе знаю. Такое впечатление, что по трубам стучат молотком.

Поэтому насос подключил к бесперебойному источнику (как у компьютера), чтобы было время безопасно остудить топку. А ещё выход предохранительного клапана – в канализацию.

Существует два варианта подключения радиаторов к системе отопления:

  1. Последовательное – когда все радиаторы соединены последовательно одной трубой. Это однотрубная система отопления.
  2. Параллельное – каждый радиатор подключается к двум трубам – подающей и обратной. Из подающей трубы в каждый радиатор подаётся горячая вода, а остывшая в радиаторе вода стекает в обратную трубу (обратку). Это двухтрубная система.

Единственный плюс однотрубной системы – экономия на трубах. Но минус существенный – ближний к котлу радиатор самый горячий, а самый дальний – самый холодный. А ещё проблематично отключить какой-то радиатор – они все в одной цепи. Если это не критично, почему бы не использовать такой вариант? Вполне нормальная схема.

Двухтрубная схема более гибкая:

  • Все радиаторы почти в равных условиях. К каждому вода подаётся одной температуры;
  • Можно на каждом радиаторе устанавливать свою температуру за счет регулирования потока воды через него;
  • Можно безболезненно перекрывать подачу воды в любой радиатор, например, когда жарко или нужно промыть радиатор;
  • Более удобна для наращивания количества радиаторов.

Таким образом, на мой взгляд, двухтрубная схема более предпочтительна.

Ради справедливости нужно сказать, что и в двухтрубном варианте последний радиатор несколько «обижен», ему меньше достаётся тепла. Причина в том, что на нём разница давлений между подачей и обраткой практически нулевая и поток воды минимальный.

Читайте также:  Как установить краб водоснабжения

Итак, какой же выбор я сделал?

В своём доме я установил воздушно-водяную систему отопления. За воздушную отвечает камин. Закрытая двухтрубная водяная схема включает в себя электрокотёл, водяной контур каминной топки и 40 алюминиевых радиаторных секций (6 радиаторов). 64 квадратных метра первого этажа в любой мороз отапливаются с избытком.

На сегодня всё. В следующих статьях предложу вашему вниманию систему газового отопления, тёплый пол, инфракрасное отопление. Комментируйте, задавайте вопросы. Спасибо, до встречи!

1. Плохая теплоизоляция стен

Одной из причин некачественной изоляции является использование плитных утеплителей и их неправильная укладка. Термограмма, полученная при проверке тепловизором, показывает цветами различной интенсивности, что стены нагреваются неравномерно. Яркие цвета показывают что в этом месте потери тепла значительно выше, что неверно для качественного утепления.

Это означает, что пенопласт или минеральная вата повреждены, неправильно уложены или полностью отсутствуют. Строиельная компания «Теплострой» предлагает владельцам коттеджей и квартир выполнять утепление целлюлозным материалом эковата, в котором не возникает полостей, мостиков холода и участков со слеживанием.

2. Некачественная теплоизоляция кровли

Если теплоизоляционное обследование зданий, цена на которое вполне приемлема для любого владельца частного дома, показывает аналогичную картинку, то может быть неправильно выполненной настилкой кровельного материала, мостики холода на чердаке при использовании плитных материалов, отверстия в кровельных листах, образовавшихся из-за процессов коррозии.

3. Засорение радиаторов

Некоторые секции радиаторов засорены, вследствие чего они не нагреваются. Причины – попадание строительного мусора, воздушные пробки, наличие заводского брака. В результате засорения радиаторов они отдают намного меньшее количество тепла в комнаты. Дефекты батарей отопления также выявляются тепловизионным обследованием дома или обследованием тепловизором квартиры.

4. Радиаторы отопления отдают свое тепло на улицу

Радиаторы установлены слишком близко к стенам, при этом обследование стены тепловизором снаружи покажет ее чрезмерный нагрев. Потери тепла и высокий расход топлива в этом случае неизбежны.

5. Неправильный монтаж теплых полов

Крайние трубы теплых полов укладываются слишком близко к наружным стенам, отчего теплоноситель в них охлаждается значительно быстрее, чем требуется. Нагревательный котел работает намного быстрее, расход топлива увеличивается. Данная неисправность также выявляется при работе с тепловизором.

6. Холод поступает в щели в окнах

Щели в окнах появляются в следующих случаях:

— неплотное прижимание окон к рамам;

— некачественный монтаж окон.

Через оконные щели в комнаты попадает холодный воздух и появляются крайне вредные сквозняки. Холодный воздух попадает также и через щели в дверях.

8. Мостики холода

Мостиками холода называются участки стен или кровли с небольшим термосопротивлением в сравнении с другими частями стен. Это могут быть углы, участки над окнами, сопряжения конструкций дома и многие другие.

При образовании мостиков холода увеличиваются потери тепловой энергии, может появляться грибок и плесень. Мостики холода также легко выявляются при тепловом контроле тепловизором.

9. Потери тепла через вентиляционную систему

При строительстве дома вентиляция была смонтирована неправильно, вследствие чего она с улицы затягивает большое количество холодного воздуха, вместо удаления холодного из помещений. Это обеспечивает образование сквозняков и снижение температуры в доме.

10. Попадание холодного воздуха через люк на крыше или монтажное отверстие кондиционера.

Воздух попадает сначала на чердак, а уже потом в комнаты здания. При плохой теплоизоляции, воздух с улицы легко проникает в дом через оставленные щели.

11. Потери через стены

На термограммах хорошо видны утечки тепла через плохо утепленные стены. Если использовался целлюлозный утеплитель эковата, такой неприятности не происходит.

12. Тепловые потери через фундамент

При строительстве дома об этом важном моменте часто забывают, хотя через него теряется тепло в больших количествах, особенно при наличии подвала.

13. Потери тепла через некачественную кладку. Незаполненные кладочные швы образуют многочисленные мостики холода, которые увеличивают потери тепла даже при хорошо выполненном утеплении.

14 Воздушные утечки тепла

Благодаря плохой герметизации и некачественного утепления стыков между листами кровли, стенами и плитами перекрытия комнаты охлаждаются и появляются сквозняки.

Здесь были перечислены характерные ошибки в строительстве и отделке частных домов, которые легко выявляются при тепловом контроле здания тепловизором. В дальнейшем их достаточно несложно устранить.

Почти 60% тепла, которая вырабатывается в России, тратится на снабжение их горячей водой и отопление, при этом не менее двух третей теряется безвозвратно вследствие потерь из-за плохой изоляции. Основные причины утечек тепловой энергии те же самые, что и в частных домах.

К ним добавляются потери через щели под подоконниками, которые являются причиной появления сквозняков. Источниками холода являются и балконы, двери на которые следует уплотнять так же качественно, как окна и входные двери. Для утепления стен применяется целлюлозная эковата. Ею же утепляются и полы первого этажа, которые являются источниками холода в городских домах.

Сохранить внутреннее тепло в городских квартирах позволяет качественное фасадное утепление. Этот способ доступен только при условии участия в них городских структур и квалифицированных специалистов.

Оцените статью