- ГИДРАВЛИЧЕСКИЙ РАСЧЕТ СИСТЕМЫ ОТОПЛЕНИЯ
- Особенности гидравлического расчета системы радиаторного отопления
- Нюансы, о которых надо знать перед выполнением гидравлического расчёта
- Системы отопления с тупиковым и попутным движением теплоносителя
- Цели гидравлического расчета
- Как выбор комплектующих для системы отопления влияет на гидравлический расчёт
- Подведение итогов
ГИДРАВЛИЧЕСКИЙ РАСЧЕТ СИСТЕМЫ ОТОПЛЕНИЯ
Гидравлический расчет системы отопления выполняют двумя основными способами:
1 — по характеристикам гидравлического сопротивления (исходя из выбранного диаметра труб, когда определяется расход воды в них), рекомендуется для однотрубных систем,
2 — по удельным и линейным потерям давления (исходя из принятого расхода волы в трубах, когда подбираются их диаметры), для однотрубных и
двухтрубных систем, смотри прил. 1. Методом характеристик получают неравные перепады температур воды в стояках и но всей системе. Разность температуры в стояке определяется:
Этот метод применяют при повышенной скорости движения теплоносителя (0,8-1,5 м/с). В результате расчета получают действительное значение расхода воды в стояках и температуры воды. При расчете по этому способу линейные (от трения) и местные (в местах сопротивления) потери давления на участке системы находят по формуле:
(4.2)
Характеристику гидравлического сопротивления участка Sj определяют по формуле
где А, -удельное динамическое давление на участке, Па/(кг/ч)2, принимается по [15, табл. 4.6 с. 12]; /dв — приведенный коэффициент гидравлического трения, принимается по [15, табл. 4.6 с. 12], м -1 ; li — длина участка, м;
-сумма коэффициентов местных сопротивлений на участке, выбирается по [15, табл. 4.12-4.13 с. 19 -20];
— приведенный коэффициент сопротивления участка.
Расход воды Gi на рассчитываемом участке, определяется по формуле
,
(4.4)
Потери давления на участке можно определять также по формуле:
(4.5)
где i — проводимость участка, кг/(чПа), связана с характеристикой сопротивления зависимостью
(4.6)
При соединении отдельных участков в циркуляционное кольцо общая характеристика сопротивления:
а) при последовательном соединении N участков
(4.7)
б) при параллельном соединении N участков (образующий трубный или приборный узел между общими точками деления и слияния потоков), отнесенная к общему расходу воды,
(4.8)
При тепло гидравлическом расчете стояков с замыкающими участками значения коэффициента затекания воды в приборы принимают по [15, табл. 5.3 с. 22] или вычисляют по формуле
(4.9)
где S1, — характеристика сопротивления и проводимость прибора с параллельными подводками после замыкающего участка; S2,
-характеристика сопротивления и проводимость смещенного замыкающего участка. Так следует поступать, когда дополнительная характеристика гидравлического сопротивления SE замыкающего участка, связанная с действием естественного циркуляционного давления в малом кольце отопительного прибора, удовлетворяет условию SE SЕ ПРЕД — то коэффициент затекания воды в прибор рассчитывают по
б) при двустороннем присоединении приборов к стояку
(4.10)
где знак «+» принимают при движении воды в стояке сверху- вниз, знак – при движении снизу — верх.
Потери давления в основном циркуляционном кольце составляют: а) при последовательном соединении N участков
(4.11)
б) при параллельном соединении ветвей =
, откуда следует
(4.12)
Расчет второстепенных циркуляционных колец системы проводят, исходя из расчета основного кольца. В каждом новом кольце рассчитывают только дополнительные (не общие) участки, параллельно соединенные с участками основного кольца.
При этом стремятся к получению равенства
(4.13)
где — располагаемое циркуляционное давление для расчета дополнительны (не общих) участков.
Это давление принимают равным потерям давления (ранее вычисленным) на параллельно соединенных с ним участках, входящих в основное кольцо
(4.14)
с поправкой на разность естественных циркуляционных давлений в рассчитываемом и основном кольцах по формуле
Расхождение (невязка) в расчетных потерях давления на параллельно соединенных участках допустимо при тупиковом движении воды в магистралях ±10%, при попутном движении +5%.
Гидравлический расчет однотрубной вертикальной системы со стояками не унифицированной конструкции и тупиковым движением воды в магистралях.
Диаметры труб выбирают, исходя из расчетного циркуляционного давления А РР (см. п. 4. 1). Для этого в циркуляционном кольце системы для каждого участка вычисляют удельную характеристику сопротивления по формуле
(4.15)
среднее ориентировочное значение удельной линейной потери по длине, Па/м; к — коэффициент, учитывающий долю местных потерь давления в системе [15, табл. 4. 5 с. 12], для насосной к = 0,35.
Диаметры труб назначают, сопоставляя полученные значения по формуле SУДм с величинами SУД для стандартных диаметров труб [15, табл. 4.6 с. 12]. Для повышения тепловой устойчивости системы при выборе диаметра труб принимают: для стояков — ближайший меньший диаметр, для магистралей — ближайший больший диаметр труб.
Гидравлический расчет однотрубной вертикальной системы со стояками унифицированной конструкции и тупиковым движением воды в магистралях.
Характеристика сопротивления стояка унифицированной конструкции, согласно (4. 6), определяется по формуле (4.16)
(4.16)
где Si— характеристика унифицированного участка стояка ; SV3, характеристика унифицированного узла стояка в зависимости от схемы присоединения. Формулу (4.16) иначе можно записать в следующем виде
(4.17)
где п, р- количество соответственно этажестояков и приборов в стояке; SЭТi, — характеристика сопротивления одного этажестояка, [15, табл. 4.7 с. 13]; SПРi, SПi–характеристика сопротивления соответственно одного отопительного прибора и подводки к отопительному прибору, [15, табл. 4.10 с. 15-16] в зависимости от схемы присоединения [15, табл. 4.9 с. 15]; SПМ , SОМ — характеристика сопротивления присоединения соответственно к подающей и к обратной магистрали, [15, табл. 4.7 с. 13]; SПУ -характеристика сопротивления прямого участка трубы (нестандартные перекрытия,
холостой подающий стояк), [15, табл. 4.7 с. 13]; 1- длина прямого участка трубы, м;
SНЭ— характеристика сопротивления нестандартного элемента стояка (компенсатор), определяется по формуле (4.3).
Диаметры труб магистралей назначают, сопоставляя полученные значения по формуле Буд с величинами 8уд для стандартных диаметров труб [15, табл 4.6 с. 12].
При вычислении 8УД(4. 15), среднее ориентировочное значение удельной линейной потери по длине определяют по формуле
Где — общая длина последовательных участков (магистралей), составляющих основное расчетное циркуляционное кольцо без длины тупикового стояка, м.
Особенности гидравлического расчета системы радиаторного отопления
Комфорт в загородном доме во многом зависит от надёжной работы системы отопления. Теплоотдача при радиаторном отоплении, системе «тёплый пол» и «тёплый плинтус» обеспечивается за счёт движения по трубам теплоносителя. Поэтому правильному подбору циркуляционных насосов, запорно-регулирующей арматуры, фитингов и определению оптимального диаметра трубопроводов предшествует гидравлический расчёт системы отопления.
Данный расчёт требует профессиональных знаний, поэтому мы в данной части учебного курса «Системы отопления: выбор, монтаж», с помощью специалиста компании REHAU, расскажем:
- О каких нюансах следует знать перед выполнением гидравлического расчёта.
- Чем отличаются системы отопления с тупиковым и попутным движением теплоносителя.
- В чём состоят цели гидравлического расчёта.
- Как материал труб и способ их соединения оказывает влияние на гидравлический расчёт.
- Каким образом специальное программное обеспечивание позволяет ускорить и упростить процесс гидравлического расчета.
Нюансы, о которых надо знать перед выполнением гидравлического расчёта
В современной системе отопления протекают сложные гидравлические процессы с динамически меняющимися характеристиками. Поэтому на гидравлический расчёт оказывает влияние множество нюансов: начиная от типа системы отопления, вида отопительных приборов и способа их присоединения, режима регулирования и заканчивая материалом комплектующих.
Важно: Трубопроводная отопительная система загородного дома — это сложная разветвлённая сеть. Гидравлический расчет определяет её правильную работу так, чтобы ко всем отопительным приборам поступало необходимое количество теплоносителя. Правильно рассчитать и спроектировать систему отопления может только квалифицированный специалист, имеющий профильное образование по данной дисциплине.
Системы радиаторной и водопроводной разводок — это разветвленные трубопроводные сети. В трубопроводах давление теряется на трение о стенки труб и на местные сопротивления в фасонных частях при разделении или слиянии потоков, на внезапные расширения или сужения «живого» сечения. Для того чтобы теплоноситель или вода поступали к отопительным приборам или точкам водоразбора в необходимом количестве, трубопроводная сеть должна быть правильно рассчитана.
Вне зависимости от того, какая система отопления смонтирована в доме, например, радиаторная разводка или тёплый пол, принцип гидравлического расчёта одинаков для всех, но каждая система требует индивидуального подхода.
Например, система отопления может быть заправлена водой, этилен- или пропиленгликолем, а это повлияет на гидравлические параметры системы.
У этиленгликоля или пропиленгликоля большая вязкость и меньшая текучесть, чем у воды, а значит, и сопротивление при движении по трубопроводу будет больше. Кроме этого, теплоёмкость этиленгликоля меньше, чем у воды, и составляет 3,45 кДж/(кг▪К), а у воды 4.19 кДж/(кг*К). В связи с этим расход, при том же перепаде температур, должен быть на 20 с лишним процентов выше.
Важно: вид теплоносителя, который будет циркулировать в системе отопления, определяется заранее. Соответственно: проектировщик при гидравлическом расчёте системы отопления должен учесть его характеристики.
Выбор одно- или двухтрубной системы отопления также влияет на методику гидравлического расчёта.
Это связано с тем, что в однотрубной системе вода последовательно проходит через все радиаторы, и расход через все приборы в расчетных условиях будет единым при различных небольших перепадах температур на каждом приборе. В двухтрубной системе вода через отдельные кольца поступает независимо в каждый радиатор. Поэтому в двухтрубной системе перепад температур на всех приборах будет одинаковым и большим, порядка 20 К, а вот расходы через каждый прибор будут существенно различаться.
При гидравлическом расчете выбирается самое нагруженное кольцо. Оно является расчётным. Все остальные кольца увязываются с ним так, чтобы потери в параллельных кольцах были одинаковыми, с соответствующими им участками главного кольца.
При выполнении гидравлического расчета обычно вводятся следующие допущения:
- Скорость воды в подводках не более 0,5 м/с, в магистралях в коридорах 0,6-0,8 м/с, в магистралях в подвалах 1,0-1,5 м/с.
- Удельные потери давления на трение в трубопроводах — не более 140 Па/м.
Системы отопления с тупиковым и попутным движением теплоносителя
Отметим, что в системах радиаторной разводки, при едином принципе гидравлического расчёта, существуют разные подходы, т.к. системы подразделяются на тупиковые и попутные.
При тупиковой схеме теплоноситель движется по трубам «подачи» и «обратки» в противоположные стороны. И, соответственно, в попутной схеме теплоноситель движется по трубам в одном направлении.
В тупиковых системах расчет ведётся через дальние — наиболее нагруженные участки. Для этого выбирается главное циркуляционное кольцо. Это самое неблагоприятное направление для воды, по которому прежде всего подбираются диаметры отопительных труб. Все остальные второстепенные кольца, которые возникают в этой системе, должны увязываться с главным. В попутной системе расчёт ведётся через средний, наиболее нагруженный, стояк.
В системах водопровода соблюдается аналогичный принцип. Система рассчитывается через самый удалённый и самый нагруженный стояк. Но есть особенность – в расчёте расходов.
Важно: если в радиаторной разводке расход зависит от количества тепла и перепадов температур, то в водопроводе расход зависит от норм водопотребления, а также от типа установленной водоразборной арматуры.
Цели гидравлического расчета
Цели гидравлического расчета заключаются в следующем:
- Подобрать оптимальные диаметры трубопроводов.
- Увязать давления в отдельных ветвях сети.
- Выбрать циркуляционный насос для системы отопления.
Раскроем подробнее каждый из этих пунктов.
1. Подбор диаметров трубопроводов
Чем меньше диаметр трубопровода, тем больше сопротивление оказывается потоку теплоносителя из-за трения о стенки трубопровода и местных сопротивлений на поворотах и ответвлениях. Поэтому для малых расходов, как правило, берутся малые диаметры трубопроводов, для больших расходов, соответственно, большие диаметры, за счёт чего можно ограниченно отрегулировать систему.
Если система разветвлённая – есть короткая и длинная ветка, то на длинной ветке идёт большой расход, а на короткой — меньший. В этом случае короткая ветка должна выполняться из труб меньших диаметров, а длинная ветка должна выполняться из труб большего диаметра.
И, по мере уменьшения расхода, от начала к концу ветки диаметры труб должны уменьшаться так, чтобы скорость теплоносителя была примерно одинакова.
2. Увязка давлений в отдельных ветвях сети
Увязка может производиться подбором соответствующих диаметров труб или, если возможности этого способа исчерпаны, то за счёт установки регуляторов расхода давления или регулировочных вентилей на отдельных ветвях.
Частично мы, как это описано выше, можем увязать давление с помощью подбора диаметров трубопроводов. Но не всегда это удаётся сделать. Например, если берём самый маленький диаметр трубопровода на короткой ветке, а сопротивление в нём все равно недостаточно большое, тогда весь поток воды будет идти через короткую ветку, не заходя в длинную. В этом случае требуется дополнительная регулировочная арматура.
Регулировочная арматура может быть разной.
Бюджетный вариант — ставим регулировочный вентиль — т.е. вентиль с плавной регулировкой, который имеет градацию в настройке. Каждый вентиль имеет свою характеристику. При гидравлическом расчёте проектировщик смотрит, какое давление необходимо погасить, и определяется так называемая невязка давлений между длинной и короткой ветками. Тогда по характеристике вентиля проектировщик определяет, на сколько оборотов этот вентиль, от полностью закрытого положения, надо будет открыть. Например, на 1, на 1.5 или на 2 оборота. В зависимости от степени открытия вентиля будет добавляться разное сопротивление.
Более дорогой и сложный вариант регулировочной арматуры — т.н. регуляторы давления и регуляторы расхода. Это устройства, на которых мы задаём необходимый расход или необходимый перепад давлений, т.е. падение давлений на этой ветке. В этом случае устройства сами контролируют работу системы и, если расход не соответствует требуемому уровню, то они открывают сечение, и расход увеличивается. Если расход слишком большой, то сечение перекрывается. Аналогично происходит и с давлением.
Если все потребители после ночного понижения теплоотдачи одновременно открыли утром свои отопительные приборы, то теплоноситель попытается, в первую очередь, поступать в ближние к тепловому пункту приборы, а до дальних дойдет спустя часы. Тогда сработает регулятор давления, прикрывая ближайшие ветки и, тем самым, обеспечит равномерное поступление теплоносителя во все ветки.
3. Подбор циркуляционного насоса по давлению (напору) и по расходу (подаче)
Расчетные потери давления в главном циркуляционном кольце (с небольшим запасом) определят напор для циркуляционного насоса. А расчетный расход насоса – это суммарный расход теплоносителя по всем ветвям системы. Насос подбирается по напору и по расходу.
Если в системе стоит несколько циркуляционных насосов, то в случае их последовательного монтажа у них суммируется напор, а расход будет общим. Если насосы работают параллельно, то у них суммируется расход, а напор будет одинаковым.
Важно: Определив в ходе гидравлического расчёта потери давления в системе, можно выбрать циркуляционный насос, который оптимально будет соответствовать параметрам системы, обеспечивая оптимум затрат – капитальных (стоимость насоса) и эксплуатационных (стоимость электроэнергии на циркуляцию).
Как выбор комплектующих для системы отопления влияет на гидравлический расчёт
Материал, из которого изготовлены трубы системы отопления, фитинги, а также техника их соединения, оказывает существенное влияние на гидравлический расчет.
Трубы, имеющие гладкую внутреннюю поверхность, уменьшают потери на трение при движении теплоносителя. Это даёт нам преимущества – берём трубопроводы меньшего диаметра и экономим на материале. Также уменьшаются затраты электроэнергии, необходимые для работы циркуляционного насоса. Можно взять насос меньшей мощности, т.к. за счёт меньшего сопротивления в трубопроводах требуется меньший напор.
В местах соединений «фитинг-труба», в зависимости от способа их монтажа, могут быть большие потери, или, наоборот, потери на сопротивление потоку при движении теплоносителя сведены к минимуму.
Например, если используется техника соединения методом «надвижной гильзы», т.е. развальцовывается конец трубопровода, и внутрь вставляется фитинг, то за счёт этого не происходит заужения живого сечения. Соответственно: уменьшается местное сопротивление, и уменьшаются энергетические затраты на циркуляцию воды.
Подведение итогов
Выше уже говорилось, что гидравлический расчёт системы отопления — это сложная задача, требующая профессиональных знаний. Если предстоит спроектировать сильно разветвлённую систему отопления (большой дом), то расчёт вручную отнимает много сил и времени. Для упрощения данной задачи разработаны специальные компьютерные программы.
С помощью этих программ можно сделать гидравлический расчёт, определить регулировочные характеристики запорно-регулировочной арматуры и автоматически составить заказную спецификацию. В зависимости от типа программ, расчёт осуществляется в среде AutoCAD или в собственном графическом редакторе.
Добавим, что сейчас при проектировании промышленных и гражданских объектов наметилась тенденция к использованию BIM технологий (building information modeling). В этом случае все проектировщики работают в едином информационном пространстве. Для этого создаётся «облачная» модель здания. Благодаря этому любые нестыковки выявляются ещё на стадии проектировании, и своевременно вносятся необходимые изменения в проект. Это позволяет точно спланировать все строительные работы, избежать затягивания сроков сдачи объекта и тем самым сократить смету.