Защита систем отопления от опорожнения

Вопрос № 34. Объяснить систему автоматизации теплового узла с защитой систем отопления от опорожнения.

Схема автоматизированного узла по независимой схеме присоединения к тепловой сети смешанной системы горячего водоснабжения приведена на рис.1.

Регулятор температуры прямого действия типа РТ (1-1, 23) получает импульс на регулирование в зависимости от температуры горячей воды, поступающей в сеть горячего водоснабжения, и воздействует на подачу теплоносителя из теплосети в подогреватель. Такое присоединение систем горячего водоснабжения к тепловым сетям называют способом посредством водоводяных подогревателей (независимая схема).

Системы горячего водоснабжения в зависимости от назначения объекта бывают с циркуляцией воды при отсутствии водоразбора или при незначительном водоразборе и с циркуляцией только при её разборе (тупиковая система).

На рис.1. циркуляция воды осуществляется центробежным насосом 3. При отсутствии водоразбора или незначительном водоразборе вода в системе горячего водоснабжения может значительно охладиться. Чтобы этого избежать, предусмотрен центробежный насос 3, который включается автоматически, если температура в системе горячего водоснабжения снизится до 45ºC, начинается принудительная циркуляция воды в системе и её подогрев в подогревателе. Давление воды из водопровода контролируется манометром 16, давление воды после подогревателя – манометром 14, постоянное давление теплоносителя в прямой линии поддерживается регулятором давления прямого действия типа РД (17-1, 2, 3). Вода из обратной линии подмешивается насосом 4; насос 5 резервный. С целью уменьшения влияния переменного напора сети в системе отопления на подающем трубопроводе устанавливают регулятор расхода прямого действия типа РР (2-1, 2, 3).

Защита системы от опорожнения осуществляется регулятором давления прямого действия типа РД (17-1, 2, 3), установленным на обратном трубопроводе.

Рис.1. Схема автоматизации теплового узла смешанной системы горячего водоснабжения

Защита подпиточной и сетевой воды от насыщения газами при ее хранении и транспортировании

Ямлеева Э. У., канд. техн. наук, ст. преподаватель, Шарапов В. И., профессор, докт. техн. Наук Ульяновский государственный технический университет (УлГТУ), Россия

Материалы Международной научно-технической конференции «Теоретические основы теплогазоснабжения и вентиляции», 23 – 25 ноября 2005, МГСУ

Рассматриваются способы защиты подпиточной и сетевой воды систем теплоснабжения от вторичного насыщения коррозионно-агрессивными газами. Обобщены результаты теоретических и практических исследований причин повышения содержания кислорода и диоксида углерода в воде систем теплоснабжения.

Надежность и экономичность систем централизованного теплоснабжения и их теплоисточников — ТЭЦ и котельных, в значительной мере определяется эффективностью защиты оборудования и теплопроводов от внутренней коррозии.

Основной причиной внутренней коррозии водяных систем теплоснабжения является присутствие в сетевой воде растворенных коррозионно-активных газов (кислорода и диоксида углерода). Для их удаления на теплоисточниках предусмотрена термическая деаэрация. Однако результаты проведенных нами обследований теплосетей городов Ульяновска, Саратова, Ростова показывают, что, несмотря на хорошую водоподготовку, в системах зачастую наблюдается завышенное содержание кислорода. Это свидетельствует о вторичном насыщении сетевой и подпиточной воды коррозионно-агрессивными газами. В некоторых системах интенсивность внутренней коррозии, лишь на 10 % обусловлена нарушениями качества подпиточной воды, а остальные 90 % приходятся на повторное насыщение воды кислородом.

На теплоисточниках насыщение воды газами происходит при ее хранении в баках-аккумуляторах и из-за подсоса воздуха через сальниковые уплотнения насосов, работающих под разрежением.

В теплосетях вода насыщается кислородом при завоздушивании системы, а также из-за присосов сырой водопроводной воды через неплотности подогревателей горячего водоснабжения (ГВС).

Насыщение деаэрированной подпиточной воды кислородом в баках-аккумуляторах ТЭЦ происходит из-за ее контакта с атмосферным воздухом. Теоретические исследования процесса насыщения воды газами в период хранения в баках при неизменном уровне в квазистационарных температурных условиях показали, что насыщение происходит по закону конвективной диффузии.

Однако нестабильный режим заполнения-опорожнения баков сопровождается интенсивным изменением уровня. Массообмен в данных условиях зависит от очень большого числа факторов и математически описать его не возможно, поэтому нами выполнено экспериментальное исследование процесса насыщения.

Читайте также:  Трубы под газовый котел отопления

Получена обширная выборка данных по изменению содержания кислорода в подпиточной воде до и после баков-аккумуляторов на Ульяновской ТЭЦ-1 за три зимних месяца 2003-04 гг. Содержание растворенного кислорода в подпиточной воде достигало 150 и более мкг/дм 3 , несмотря на эффективную деаэрацию воды. В среднем содержание кислорода после деаэраторов составляло 10-30 мкг/дм 3 . На рис. 1 приведены данные за январь 2004 г.

На ТЭЦ установлено четыре подпиточных бака-аккумулятора объемом по 3000 м 3 .

Замеры содержания кислорода в деаэрированной воде производились три раза за сутки. Содержание растворенного кислорода оценивалось с помощью малогабаритного анализатора растворенного кислорода МАРК-301Т.

С помощью корреляционного анализа выявлена наибольшая связь между величиной насыщения и скоростью падения уровня в баке (коэффициент корреляции r=0,8). Зависимости насыщения от величины падения уровня (r=0,64) и падения уровня, отнесенного к уровню воды на момент замера (r=0,61), существуют, но менее выражены. Насыщение воды кислородом не зависит от уровня воды в баке на момент замера (r=0,3) (рис. 2).

В соответствии с методическими указаниями [1] существует две группы методов защиты металла баков-аккумуляторов от коррозии и воды в них от аэрации (контакта с атмосферным воздухом).

Первая группа методов предусматривает раздельную защиту металла баков от коррозии и деаэрированной воды от аэрации. Стенки баков защищаются от коррозии лакокрасочными или металлическими, нанесенными путем металлизации, покрытиями, а для защиты воды от аэрации используются плавающие материалы, затрудняющие доступ воздуха к поверхности воды (поплавковые устройства, плавающие шарики, антииспарительные жидкости), а также газовые или паровые подушки над поверхностью воды.

Ко второй группе относятся комбинированные методы, которые предусматривают как для защиты стенок баков-аккумуляторов от коррозии, так и воды от аэрации с применением герметизирующих жидкостей.

Существующие методы защиты баков-аккумуляторов достаточно дороги, не всегда эффективны и усложняют эксплуатацию баков.

Нами разработана серия способов защиты подпиточной воды от вторичного насыщения коррозионно-активными газами при ее хранении в баках-аккумуляторах ТЭЦ. На рис. 3 приведены два таких решения [2, 3].

Способ защиты на рис. 3, а предусматривает размещение на поверхности воды бака-аккумулятора сетки из железной проволоки, удерживаемой на поверхности воды с помощью прикрепленных к сетке поплавков. Кислород, растворенный в воде, вступает в электрохимическую коррозионную реакцию с железной сеткой и его содержание в подпиточной воде уменьшается.

Способ защиты воды в баке-аккумуляторе от аэрации (рис. 3, б) предусматривает сообщение с атмосферой только через трубу, вваренную в крышу бака-аккумулятора, причем нижний конец трубы размещен ниже уровня трубы для отвода воды, а верхний конец трубы выступает над крышей бака.

Источником заражения деаэрированной воды кислородом и диоксидом углерода могут быть насосные агрегаты, используемые в системах теплоснабжения, на ТЭЦ и котельных для транспорта сетевой и подпиточной воды теплосети.

Исследованы условия возникновения подсоса воздуха через сальниковые уплотнения подпиточных насосов со стороны всасывания в результате разрежения в центральной части рабочего колеса. На величину подсоса значительно влияет размер зазора между сальниковой набивкой и втулкой на валу насоса и величина разрежения. Разрежение возрастает при снижении величины подпора и значительных линейных и местных потерях напора в подпиточной трубе от бака до насоса.

На основе уравнения Бернулли построена номограмма для определения величины разрежения на всасывающем патрубке насоса, работающего с подпором, которая может использоваться при проектировании тракта между баками-аккумуляторами и подпиточными насосами для защиты системы от подсосов воздуха через них с целью максимального использования объема баков-аккумуляторов. Вторая разработанная номограмма позволяет определить количество подсасываемого кислорода в зависимости от величины зазора, разрежения во всасывающем патрубке, конструктивных размеров сальника и подачи насоса.

Правильно запроектированный тракт подпиточной воды и качественное обслуживание насосных агрегатов обеспечивают их воздушную плотность. Показано, что наиболее эффективным средством защиты является использование насосов с гидравлическим уплотнением сальников, расположенных со всасывающей стороны насосов. Вода на уплотнение должна подаваться из напорной трубы.

Читайте также:  Шевроле блейзер система отопления

В открытых системах теплоснабжения с переменным расходом сетевой воды и неустойчивым гидравлическим режимом основной причиной попадания воздуха в сетевую воду является опорожнение местных систем отопления.

С целью повышения надежности работы систем отопления при переменном расходе сетевой воды в теплосетях разработан ряд решений по стабилизации гидравлических режимов местных систем отопления.

Так, в схеме на рис. 4 регулятор давления, установленный на подающем стояке и связанный с датчиком давления в системе отопления, обеспечивает гидравлическую защиту отопительных приборов от превышения давления в подающей магистрали. А регулятор расхода на обратном стояке одновременно с регулированием тепловой нагрузки осуществляет гидравлическую защиту системы отопления, т. е. исключает возможность ее опорожнения [4].

Осуществлять передачу сигнала от датчика давления, установленного у местных абонентов, к регулирующему органу, расположенному на большом расстоянии от датчика, на теплоисточнике, можно с помощью радиосигнала через местных операторов сотовой связи или с помощью радиомодема через Интернет.

Обеспечение гидравлической плотности подогревателей горячего водоснабжения, безусловное устранение попадания сырой недеаэрированной воды в сетевую воду в местных и центральных тепловых пунктах является важнейшим мероприятием, без выполнения которого невозможна эффективная защита системы теплоснабжения от внутренней коррозии.

1. Установлены основные причины вторичного насыщения подпиточной и сетевой воды коррозионно-агрессивными газами при ее хранении на ТЭЦ и транспортировании в системах теплоснабжения.

2. Выявлено, что насыщение кислородом деаэрированной подпиточной воды в баках-аккумуляторах ТЭЦ наиболее интенсивно происходит в период их заполнения-опорожнения. С помощью корреляционного анализа установлена наибольшая связь между величиной насыщения и скоростью падения уровня в баке (коэффициент корреляции r=0,8).

3. Разработаны новые технологии защиты подпиточной воды от насыщения кислородом при хранении в баках-аккумуляторах ТЭЦ с помощью дыхательной трубы, уменьшающей площадь контакта воды с воздухом, а также с использованием расположенной в баке стальной сетки – поглотителя растворенного кислорода.

4. Сформулированы условия работы подпиточных насосов баков-аккумуляторов, исключающие подсос воздуха через сальниковые уплотнения со стороны зоны разрежения.

5. Разработана технология защиты системы теплоснабжения от завоздушивания путем местного регулирования расхода обратной сетевой воды или регулированием давления в обратной магистрали по давлению у абонентов, находящихся в самых неблагоприятных гидравлических условиях (с минимальной величиной избыточного напора).

6. Разработаны технологии защиты от подсосов сырой воды через неплотности водоводяных подогревателей ГВС в закрытые системы теплоснабжения с помощью датчиков жесткости.

1. Методические указания по оптимальной защите баков-аккумуляторов от коррозии и воды в них от аэрации. МУ 153-34. 1-40.504-00. — М.: СПО ОРГРЭС, 2000. — 35 с.

2. Патент № 2220368 (RU). МКИ 7 F 22 D 3/00. Бак-аккумулятор для хранения деаэрированной воды / В. И. Шарапов, Э. У. Ямлеева // Бюллетень изобретений. 2003, № 36.

3. Патент № 2220367 (RU). МКИ 7 F 22 D 3/00. Бак-аккумулятор для хранения деаэрированной воды / В. И. Шарапов, Э. У. Ямлеева // Бюллетень изобретений. 2003, № 36.

4. Патент 2190164 (RU). МКИ F 24 D 19/10, 3/02. Система отопления / В. И. Шарапов, П. В. Ротов, Э. У. Ямлеева // Бюллетень изобретений, 2002, № 27.

5. Патент 2204085 (RU). МКИ F 24 D 19/10, 3/02. Система теплоснабжения / В. И. Шарапов, Э. У. Ямлеева, М. А. Сивухина, П. В. Ротов // Бюллетень изобретений. 2003, № 13.

6. Патент № 2178120 (RU), МКИ F 24 D 3/08. Тепловой пункт закрытой системы теплоснабжения / В. И. Шарапов, Э. У. Ямлеева // Бюллетень изобретений, 2002, № 1.

Требования к автоматизации тепловых пунктов по нормам

  • в разделе 14 СП 124.13330.2012 «Тепловые сети. Актуализированная редакция СНиП 41-02-2003» (данный раздел действует на добровольной основе, в соответствии с приказом Росстандарта от 02 апреля 2020 года №687.
  • в разделе 8 СП 41-101-95 «Проектирование тепловых пунктов»
Читайте также:  Шумит газовый котел при включении отопления

Согласно п.14.4 СП 124.13330.2012 в тепловых пунктах предусматривается размещение оборудования, арматуры, приборов контроля, управления и автоматизации, посредством которых осуществляются:

  • преобразование вида теплоносителя или его параметров;
  • контроль параметров теплоносителя;
  • учет тепловых нагрузок, расходов теплоносителя и конденсата;
  • регулирование расхода теплоносителя и распределение по системам потребления теплоты (через распределительные сети в ЦТП или непосредственно в системы ИТП);
  • защита местных систем от аварийного повышения параметров теплоносителя;
  • заполнение и подпитка систем потребления теплоты;
  • сбор, охлаждение, возврат конденсата и контроль его качества;
  • аккумулирование теплоты;
  • подготовка воды для систем горячего водоснабжения.

В тепловом пункте в зависимости от его назначения и местных условий могут осуществляться все перечисленные мероприятия или только их часть. Приборы контроля параметров теплоносителя и учета расхода теплоты следует предусматривать во всех тепловых пунктах.

Согласно п.14.2 СП 124.13330.2012 проектирование тепловых пунктов должно осуществляться в соответствии с СП 60.13330 и [СП 41-101-95], с учетом требований настоящего раздела, которые распространяются на тепловые пункты, классифицируемые как сооружения на тепловых сетях и находящиеся на балансе теплоснабжающей (теплосетевой) компании.

Согласно п.8.2 СП 41-101-95 автоматизация тепловых пунктов закрытых и открытых систем теплоснабжения должна обеспечивать:

  • поддержание заданной температуры воды, поступающей в систему горячего водоснабжения;
  • регулирование подачи теплоты (теплового потока) в системы отопления в зависимости от изменения параметров наружного воздуха с целью поддержания заданной температуры воздуха в отапливаемых помещениях;
  • ограничение максимального расхода воды из тепловой сети на тепловой пункт путем прикрытия клапана регулятора расхода теплоты на отопление закрытых систем теплоснабжения для отдельных жилых и общественных зданий и микрорайонов с максимальным тепловым потоком на вентиляцию менее 15 % максимального теплового потока на отопление либо путем прикрытия клапана регулятора температуры воды, поступающей в систему горячего водоснабжения в тепловых пунктах открытых систем теплоснабжения и закрытых систем теплоснабжения промышленных зданий, а также жилых микрорайонов и общественных зданий с максимальным тепловым потоком на вентиляцию более 15 % максимального теплового потока на отопление. Допускается ограничение максимального расхода воды из тепловой сети на тепловой пункт путем установки специального регулятора с клапаном на подающем трубопроводе. Эту же роль выполняет регулятор постоянства расхода воды, устанавливаемый на перемычке II ступени водоподогревателя (см. рис. 8) при отсутствии регуляторов расхода теплоты на отопление и закрытой задвижке перемычки Б;
  • поддержание требуемого перепада давлений воды в подающем и обратном трубопроводах тепловых сетей на вводе в ЦТП или ИТП при превышении фактического перепада давлений над требуемым более чем на 200 кПа;
  • минимальное заданное давление в обратном трубопроводе системы отопления при возможном его снижении;
  • поддержание требуемого перепада давлений воды в подающем и обратном трубопроводах систем отопления в закрытых системах теплоснабжения при отсутствии регуляторов расхода теплоты на отопление (см. рис. 7, 8), а также установке корректирующих насосов, характеризующихся изменением напора в пределах более 20 % (в диапазоне рабочих расходов), на перемычке между обратным и подающим трубопроводами тепловой сети (см. рис 1, 2);
  • включение и выключение подпиточных устройств для поддержания статического давления в системах теплопотребления при их независимом присоединении;
  • защиту систем потребления теплоты от повышения давления или температуры воды в трубопроводах этих систем при возможности превышения допустимых параметров;
  • поддержание заданного давления воды в системе горячего водоснабжения;
  • включение и выключение корректирующих насосов;
  • блокировку включения резервного насоса при отключении рабочего;
  • защиту системы отопления от опорожнения;
  • прекращение подачи воды в бак-аккумулятор или в расширительный бак при независимом присоединении систем отопления по достижении верхнего уровня в баке и включение подпиточных устройств при достижении нижнего уровня;
  • включение и выключение дренажных насосов в подземных тепловых пунктах по заданным уровням воды в дренажном приямке.
Оцените статью